Reliable predictor of BCI motor imagery performance using median nerve stimulation.

Valérie Marissens Cueva, Laurent Bougrain, Fabien Lotte, Sébastien Rimbert
{"title":"Reliable predictor of BCI motor imagery performance using median nerve stimulation.","authors":"Valérie Marissens Cueva, Laurent Bougrain, Fabien Lotte, Sébastien Rimbert","doi":"10.1088/1741-2552/adc48d","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Predicting performance in brain-computer interfaces (BCIs) is crucial for enhancing user experience, optimizing training and identifying the most efficient BCI approach for each individual.<i>Approach.</i>This study explores the use of median nerve stimulation (MNS) as a predictor of motor imagery (MI)-BCI performance. MNS induces event related (de)synchronization (ERD/ERS) patterns in the brain that are similar to those generated during MI tasks, providing a non-invasive, user-independent, and easy-to-setup method for performance prediction.<i>Main results.</i>Our proposed predictor, based on the minimum value of the ERD induced by the MNS, not only exhibits a robust correlation with the MI-BCI performance accuracy (rho = -0.71,p<0.001), but also effectively predicts this performance with a significant correlation (rho = 0.61, mean absolute error = 9.0,p<0.01). These results demonstrate its validity as a reliable predictor of MI-BCI performance.<i>Significance.</i>By systematically analyzing patterns induced by MNS and correlating them with subsequent MI-BCI task performance, we aim to establish a robust predictive method of motor activity to each individual only based on MNS, making it possible, among other things, to passively predict BCI deficiency or proficiency, and to potentially adapt BCI parameters for an efficient BCI experience or BCI-based recovery.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc48d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Predicting performance in brain-computer interfaces (BCIs) is crucial for enhancing user experience, optimizing training and identifying the most efficient BCI approach for each individual.Approach.This study explores the use of median nerve stimulation (MNS) as a predictor of motor imagery (MI)-BCI performance. MNS induces event related (de)synchronization (ERD/ERS) patterns in the brain that are similar to those generated during MI tasks, providing a non-invasive, user-independent, and easy-to-setup method for performance prediction.Main results.Our proposed predictor, based on the minimum value of the ERD induced by the MNS, not only exhibits a robust correlation with the MI-BCI performance accuracy (rho = -0.71,p<0.001), but also effectively predicts this performance with a significant correlation (rho = 0.61, mean absolute error = 9.0,p<0.01). These results demonstrate its validity as a reliable predictor of MI-BCI performance.Significance.By systematically analyzing patterns induced by MNS and correlating them with subsequent MI-BCI task performance, we aim to establish a robust predictive method of motor activity to each individual only based on MNS, making it possible, among other things, to passively predict BCI deficiency or proficiency, and to potentially adapt BCI parameters for an efficient BCI experience or BCI-based recovery.

正中神经刺激对脑机接口运动意象表现的可靠预测。
目的:预测脑机接口(BCI)的性能对于增强用户体验、优化训练和确定每个人最有效的BCI方法至关重要。方法:本研究探讨了使用正中神经刺激(MNS)作为运动想象(MI)-脑机接口表现的预测因子。MNS在大脑中诱导事件相关(去)同步(ERD/ERS)模式,这些模式与MI任务期间产生的模式相似,为性能预测提供了一种非侵入性、独立于用户且易于设置的方法。主要结果:我们提出的基于MNS诱导的ERD最小值的预测因子,不仅与MI-BCI的表现准确性有显著的相关性(rho = -0.71, p < 0.001),而且与MI-BCI的表现准确性有显著的相关性(rho = 0.61,平均绝对误差= 9.0,p < 0.01)。这些结果证明了其作为MI-BCI性能可靠预测因子的有效性。意义:通过系统地分析MNS诱导的模式,并将其与随后的MI-BCI任务表现相关联,我们的目标是建立一种仅基于MNS的稳健的运动活动预测方法,使其能够被动地预测BCI缺陷或熟练程度,并有可能调整BCI参数以获得有效的BCI体验或基于BCI的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信