Shuvo Brahma, Aidan Gustafson, Junaid Ur Rehman, Nicholas R Lontkowski, Alyssa Libonati, Marcus Goss, R Kōnane Bay, Jennifer A Irvin, Tania Betancourt
{"title":"Vapor Phase Deposition of Electroactive Poly(3,4-ethylenedioxythiophene) onto Electrospun Commodity Polymer Nanofibers.","authors":"Shuvo Brahma, Aidan Gustafson, Junaid Ur Rehman, Nicholas R Lontkowski, Alyssa Libonati, Marcus Goss, R Kōnane Bay, Jennifer A Irvin, Tania Betancourt","doi":"10.3791/67825","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the preparation of polyacrylonitrile (PAN) nanofibers through electrospinning to create highly porous and strong materials for applications in water purification, electrocatalysis, and biomedicine. The uniformly white PAN nanofiber mats were cut into 2 cm x 2 cm coupons to ensure consistency. After electrospinning, these nanofibers were coated with an electroactive polymer (EAP) using chemical vapor deposition, with iron (III) chloride (FeCl3) serving as an oxidant for polymerizing 3,4-ethylenedioxythiophene (EDOT) into poly(3,4-ethylenedioxythiophene) (PEDOT). The study examined the impact of different FeCl3 concentrations on PEDOT deposition on the PAN coupons. PEDOT deposition led to an increase in coupon weight. Scanning electron microscopy (SEM) revealed increases in the diameter of the nanofibers treated with increasing FeCl3 oxidant concentration, although higher FeCl3 concentrations caused inter-fiber bridging, implying a concomitant decrease in inter-fiber spacing. Energy dispersive X-ray spectroscopy (EDS) was used to confirm the presence of Fe, Cl, and S in the nanofibers, with sulfur content rising with FeCl3 concentration used, suggesting increased PEDOT deposition efficiency with increasing oxidant concentration. Mechanical testing showed that PEDOT-coated PAN fibers had improved tensile strength and toughness in the hydrated state compared to pure PAN nanofibers. These results highlight the crucial role of FeCl3 concentration in influencing the morphology and properties of PAN-PEDOT composites, enhancing their suitability for applications such as water purification, tissue engineering, biosensing, catalysis, and energy storage.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 217","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67825","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the preparation of polyacrylonitrile (PAN) nanofibers through electrospinning to create highly porous and strong materials for applications in water purification, electrocatalysis, and biomedicine. The uniformly white PAN nanofiber mats were cut into 2 cm x 2 cm coupons to ensure consistency. After electrospinning, these nanofibers were coated with an electroactive polymer (EAP) using chemical vapor deposition, with iron (III) chloride (FeCl3) serving as an oxidant for polymerizing 3,4-ethylenedioxythiophene (EDOT) into poly(3,4-ethylenedioxythiophene) (PEDOT). The study examined the impact of different FeCl3 concentrations on PEDOT deposition on the PAN coupons. PEDOT deposition led to an increase in coupon weight. Scanning electron microscopy (SEM) revealed increases in the diameter of the nanofibers treated with increasing FeCl3 oxidant concentration, although higher FeCl3 concentrations caused inter-fiber bridging, implying a concomitant decrease in inter-fiber spacing. Energy dispersive X-ray spectroscopy (EDS) was used to confirm the presence of Fe, Cl, and S in the nanofibers, with sulfur content rising with FeCl3 concentration used, suggesting increased PEDOT deposition efficiency with increasing oxidant concentration. Mechanical testing showed that PEDOT-coated PAN fibers had improved tensile strength and toughness in the hydrated state compared to pure PAN nanofibers. These results highlight the crucial role of FeCl3 concentration in influencing the morphology and properties of PAN-PEDOT composites, enhancing their suitability for applications such as water purification, tissue engineering, biosensing, catalysis, and energy storage.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.