Clusterin-mediated polarization of M2 macrophages: a mechanism of temozolomide resistance in glioblastoma stem cells.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Jianping Wen, Xia Wu, Zhicheng Shu, Dongxu Wu, Zonghua Yin, Minglong Chen, Kun Luo, Kebo Liu, Yulong Shen, Yi Le, Qingxia Shu
{"title":"Clusterin-mediated polarization of M2 macrophages: a mechanism of temozolomide resistance in glioblastoma stem cells.","authors":"Jianping Wen, Xia Wu, Zhicheng Shu, Dongxu Wu, Zonghua Yin, Minglong Chen, Kun Luo, Kebo Liu, Yulong Shen, Yi Le, Qingxia Shu","doi":"10.1186/s13287-025-04247-z","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma remains one of the most lethal malignancies, largely due to its resistance to standard chemotherapy such as temozolomide. This study investigates a novel resistance mechanism involving glioblastoma stem cells (GSCs) and the polarization of M2-type macrophages, mediated by the extracellular vesicle (EV)-based transfer of Clusterin. Using 6-week-old male CD34<sup>+</sup> humanized huHSC-(M-NSG) mice (NM-NSG-017) and glioblastoma cell lines (T98G and U251), we demonstrated that GSC-derived EVs enriched with Clusterin induce M2 macrophage polarization, thereby enhancing temozolomide resistance in glioblastoma cells. Single-cell and transcriptome sequencing revealed close interactions between GSCs and M2 macrophages, highlighting Clusterin as a key mediator. Our findings indicate that Clusterin-rich EVs from GSCs drive glioblastoma cell proliferation and resistance to temozolomide by modulating macrophage phenotypes. Targeting this pathway could potentially reverse resistance mechanisms, offering a promising therapeutic approach for glioblastoma. This study not only sheds light on a critical pathway underpinning glioblastoma resistance but also lays the groundwork for developing therapies targeting the tumor microenvironment. Our results suggest a paradigm shift in understanding glioblastoma resistance, emphasizing the therapeutic potential of disrupting EV-mediated communication in the tumor microenvironment.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"146"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04247-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma remains one of the most lethal malignancies, largely due to its resistance to standard chemotherapy such as temozolomide. This study investigates a novel resistance mechanism involving glioblastoma stem cells (GSCs) and the polarization of M2-type macrophages, mediated by the extracellular vesicle (EV)-based transfer of Clusterin. Using 6-week-old male CD34+ humanized huHSC-(M-NSG) mice (NM-NSG-017) and glioblastoma cell lines (T98G and U251), we demonstrated that GSC-derived EVs enriched with Clusterin induce M2 macrophage polarization, thereby enhancing temozolomide resistance in glioblastoma cells. Single-cell and transcriptome sequencing revealed close interactions between GSCs and M2 macrophages, highlighting Clusterin as a key mediator. Our findings indicate that Clusterin-rich EVs from GSCs drive glioblastoma cell proliferation and resistance to temozolomide by modulating macrophage phenotypes. Targeting this pathway could potentially reverse resistance mechanisms, offering a promising therapeutic approach for glioblastoma. This study not only sheds light on a critical pathway underpinning glioblastoma resistance but also lays the groundwork for developing therapies targeting the tumor microenvironment. Our results suggest a paradigm shift in understanding glioblastoma resistance, emphasizing the therapeutic potential of disrupting EV-mediated communication in the tumor microenvironment.

群集素介导的 M2 巨噬细胞极化:胶质母细胞瘤干细胞对替莫唑胺耐药的机制。
胶质母细胞瘤仍然是最致命的恶性肿瘤之一,主要是由于它对替莫唑胺等标准化疗的耐药性。本研究探讨了一种新的耐药机制,涉及胶质母细胞瘤干细胞(GSCs)和m2型巨噬细胞的极化,由细胞外囊泡(EV)为基础的Clusterin转移介导。利用6周龄雄性CD34+人源化huHSC-(M-NSG)小鼠(NM-NSG-017)和胶质母细胞瘤细胞系(T98G和U251),我们证实了富集Clusterin的gsc来源的ev可诱导M2巨噬细胞极化,从而增强胶质母细胞瘤细胞对替莫唑胺的耐药性。单细胞和转录组测序揭示了GSCs和M2巨噬细胞之间的密切相互作用,突出了Clusterin是一个关键的中介。我们的研究结果表明,来自GSCs的富含clusterin的ev通过调节巨噬细胞表型来驱动胶质母细胞瘤细胞增殖和对替莫唑胺的抗性。靶向这一途径可能潜在地逆转耐药机制,为胶质母细胞瘤提供了一种有希望的治疗方法。这项研究不仅揭示了胶质母细胞瘤耐药的关键途径,而且为开发针对肿瘤微环境的治疗奠定了基础。我们的研究结果提示了理解胶质母细胞瘤耐药性的范式转变,强调了在肿瘤微环境中破坏ev介导的通讯的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信