Intravenous psilocybin induces dose-dependent changes in functional network organization in rat cortex.

IF 5.8 1区 医学 Q1 PSYCHIATRY
Brian H Silverstein, Nicholas Kolbman, Amanda Nelson, Tiecheng Liu, Peter Guzzo, Jim Gilligan, UnCheol Lee, George A Mashour, Giancarlo Vanini, Dinesh Pal
{"title":"Intravenous psilocybin induces dose-dependent changes in functional network organization in rat cortex.","authors":"Brian H Silverstein, Nicholas Kolbman, Amanda Nelson, Tiecheng Liu, Peter Guzzo, Jim Gilligan, UnCheol Lee, George A Mashour, Giancarlo Vanini, Dinesh Pal","doi":"10.1038/s41398-025-03308-4","DOIUrl":null,"url":null,"abstract":"<p><p>Psilocybin produces an altered state of consciousness in humans and is associated with complex spatiotemporal changes in cortical networks. Given the emphasis on rodent models for mechanistic studies, there is a need for characterization of the effect of psilocybin on cortex-wide network dynamics. Previous electroencephalographic studies of psychedelics in rodents have primarily used sparse electrode arrays with limited spatial resolution, precluding network level analysis, and have been restricted to lower gamma frequencies. Therefore, in this study, we used electroencephalographic recordings from 27 sites/electrodes across rat cortex (n = 6 male, 6 female) to characterize the effect of psilocybin (0.1, 1, and 10 mg/kg delivered over an hour) on brain network organization as inferred through changes in node degree (an index of network density) and connection strength (via weighted phase-lag index). The removal of aperiodic component from the electroencephalogram localized the primary oscillatory changes to theta (4-10 Hz), medium gamma (70-110 Hz), and high gamma (110-150 Hz) bands, which were used for the network analysis. Additionally, we determined the concurrent changes in theta-gamma phase-amplitude coupling. We report that psilocybin, in a dose-dependent manner, 1) disrupted theta-gamma coupling [p < 0.05], 2) increased frontal high gamma connectivity [p < 0.05] and posterior theta connectivity [p ≤ 0.049], and 3) increased frontal high gamma [p < 0.05] and posterior theta [p ≤ 0.046] network density. The behavioral activity and the medium gamma frontoparietal connectivity showed an inverted-U relationship with psilocybin dose. Our results suggest that high-frequency network organization, decoupled from local theta-phase, may be an important signature of psilocybin-induced non-ordinary state of consciousness.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"93"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03308-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Psilocybin produces an altered state of consciousness in humans and is associated with complex spatiotemporal changes in cortical networks. Given the emphasis on rodent models for mechanistic studies, there is a need for characterization of the effect of psilocybin on cortex-wide network dynamics. Previous electroencephalographic studies of psychedelics in rodents have primarily used sparse electrode arrays with limited spatial resolution, precluding network level analysis, and have been restricted to lower gamma frequencies. Therefore, in this study, we used electroencephalographic recordings from 27 sites/electrodes across rat cortex (n = 6 male, 6 female) to characterize the effect of psilocybin (0.1, 1, and 10 mg/kg delivered over an hour) on brain network organization as inferred through changes in node degree (an index of network density) and connection strength (via weighted phase-lag index). The removal of aperiodic component from the electroencephalogram localized the primary oscillatory changes to theta (4-10 Hz), medium gamma (70-110 Hz), and high gamma (110-150 Hz) bands, which were used for the network analysis. Additionally, we determined the concurrent changes in theta-gamma phase-amplitude coupling. We report that psilocybin, in a dose-dependent manner, 1) disrupted theta-gamma coupling [p < 0.05], 2) increased frontal high gamma connectivity [p < 0.05] and posterior theta connectivity [p ≤ 0.049], and 3) increased frontal high gamma [p < 0.05] and posterior theta [p ≤ 0.046] network density. The behavioral activity and the medium gamma frontoparietal connectivity showed an inverted-U relationship with psilocybin dose. Our results suggest that high-frequency network organization, decoupled from local theta-phase, may be an important signature of psilocybin-induced non-ordinary state of consciousness.

静脉注射裸盖菇素诱导大鼠皮质功能网络组织的剂量依赖性变化。
裸盖菇素使人类意识状态发生改变,并与皮层网络复杂的时空变化有关。鉴于机制研究的重点是啮齿动物模型,有必要表征裸盖菇素对全皮质网络动力学的影响。先前对啮齿动物致幻剂的脑电图研究主要使用空间分辨率有限的稀疏电极阵列,排除了网络级别的分析,并且仅限于较低的伽马频率。因此,在本研究中,我们使用大鼠皮质27个位点/电极(雄性6只,雌性6只)的脑电图记录,通过节点度(网络密度指标)和连接强度(加权相位滞后指数)的变化来表征裸盖菇素(0.1、1和10 mg/kg)在一小时内给药对大脑网络组织的影响。从脑电图中去除非周期成分将主要振荡变化定位在theta (4- 10hz),中gamma (70-110 Hz)和高gamma (110-150 Hz)波段,这些波段用于网络分析。此外,我们确定了theta-gamma相位-振幅耦合的并发变化。我们报告说,裸盖菇素,以剂量依赖的方式,1)破坏θ - γ偶联[p]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信