Divergent control of seed germination by cytokinins in weedy broomrapes and witchweeds.

IF 3.9 2区 生物学 Q2 CELL BIOLOGY
Guillaume Brun, Estelle Billard, Adéla Hýlová, Grégory Montiel, Lenka Plačková, Karel Doležal, Virginie Puech-Pagès, Philippe Simier, Susann Wicke, Lukáš Spíchal, Philippe Delavault, Jean-Bernard Pouvreau
{"title":"Divergent control of seed germination by cytokinins in weedy broomrapes and witchweeds.","authors":"Guillaume Brun, Estelle Billard, Adéla Hýlová, Grégory Montiel, Lenka Plačková, Karel Doležal, Virginie Puech-Pagès, Philippe Simier, Susann Wicke, Lukáš Spíchal, Philippe Delavault, Jean-Bernard Pouvreau","doi":"10.1093/pcp/pcaf032","DOIUrl":null,"url":null,"abstract":"<p><p>Broomrapes (Phelipanche and Orobanche spp.) and witchweeds (Striga spp.) are parasitic weeds that are increasingly threatening crops worldwide. Seeds of these species rely on host-derived signals such as strigolactones to germinate. While cytokinins were also reported as germination inducers of witchweeds, their role during germination of broomrapes remains unexplored. Our study shows that some but not all cytokinins stimulate Striga hermonthica germination independently of strigolactones, and that high concentrations of bioactive cytokinins trigger Striga seedlings to differentiate into fully extruded embryo-like structures. In contrast, cytokinin free bases but not ribosylated or glycosylated conjugates are extremely potent inhibitors of broomrapes germination. Germination inhibition upon the cytokinin signaling inhibitor PI-55 and inhibitor of cytokinin degradation INCYDE suggest that the cytokinin perception and degradation machinery is conserved in parasitic weeds. In Phelipanche ramosa, gene expression analyses combined with targeted quantification of cytokinin contents revealed that strigolactones first induce an increase in ABA catabolism, then a modification of the cytokinin endogenous pool in favor of inactive conjugates. Overall, this study provides valuable insights into the hormonal interplay governing seed germination in broomrapes and witchweeds, paving the way for future studies aimed at developing novel strategies for parasitic weed control.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcaf032","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Broomrapes (Phelipanche and Orobanche spp.) and witchweeds (Striga spp.) are parasitic weeds that are increasingly threatening crops worldwide. Seeds of these species rely on host-derived signals such as strigolactones to germinate. While cytokinins were also reported as germination inducers of witchweeds, their role during germination of broomrapes remains unexplored. Our study shows that some but not all cytokinins stimulate Striga hermonthica germination independently of strigolactones, and that high concentrations of bioactive cytokinins trigger Striga seedlings to differentiate into fully extruded embryo-like structures. In contrast, cytokinin free bases but not ribosylated or glycosylated conjugates are extremely potent inhibitors of broomrapes germination. Germination inhibition upon the cytokinin signaling inhibitor PI-55 and inhibitor of cytokinin degradation INCYDE suggest that the cytokinin perception and degradation machinery is conserved in parasitic weeds. In Phelipanche ramosa, gene expression analyses combined with targeted quantification of cytokinin contents revealed that strigolactones first induce an increase in ABA catabolism, then a modification of the cytokinin endogenous pool in favor of inactive conjugates. Overall, this study provides valuable insights into the hormonal interplay governing seed germination in broomrapes and witchweeds, paving the way for future studies aimed at developing novel strategies for parasitic weed control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信