Weijian Chen, Maryam Abbasi, Serra Erdamar, Jacob Muldoon, Yogesh N Joglekar, Kater W Murch
{"title":"Engineering Nonequilibrium Steady States through Floquet Liouvillians.","authors":"Weijian Chen, Maryam Abbasi, Serra Erdamar, Jacob Muldoon, Yogesh N Joglekar, Kater W Murch","doi":"10.1103/PhysRevLett.134.090402","DOIUrl":null,"url":null,"abstract":"<p><p>We experimentally study the transient dynamics of a dissipative superconducting qubit under periodic drive toward its nonequilibrium steady states. The corresponding stroboscopic evolution, given by the qubit states at times equal to integer multiples of the drive period, is determined by a (generically non-Hermitian) Floquet Liouvillian. The drive period controls both the transients across its non-Hermitian degeneracies and the resulting nonequilibrium steady states. These steady states can exhibit higher purity compared to those achieved with a constant drive. We further study the dependence of the steady states on the direction of parameter variation and relate these findings to the recent studies of dynamically encircling exceptional points. Our Letter provides a new approach to control non-Hermiticity in dissipative quantum systems and presents a new paradigm in quantum state preparation and stabilization.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 9","pages":"090402"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.090402","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally study the transient dynamics of a dissipative superconducting qubit under periodic drive toward its nonequilibrium steady states. The corresponding stroboscopic evolution, given by the qubit states at times equal to integer multiples of the drive period, is determined by a (generically non-Hermitian) Floquet Liouvillian. The drive period controls both the transients across its non-Hermitian degeneracies and the resulting nonequilibrium steady states. These steady states can exhibit higher purity compared to those achieved with a constant drive. We further study the dependence of the steady states on the direction of parameter variation and relate these findings to the recent studies of dynamically encircling exceptional points. Our Letter provides a new approach to control non-Hermiticity in dissipative quantum systems and presents a new paradigm in quantum state preparation and stabilization.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks