Elzat Elham-Yilizati Yilihamu, Jun Shang, Zhi-Hai Su, Jin-Tao Yang, Kun Zhao, Hai Zhong, Shi-Qing Feng
{"title":"Quantification and classification of lumbar disc herniation on axial magnetic resonance images using deep learning models.","authors":"Elzat Elham-Yilizati Yilihamu, Jun Shang, Zhi-Hai Su, Jin-Tao Yang, Kun Zhao, Hai Zhong, Shi-Qing Feng","doi":"10.1007/s11547-025-01996-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Application of a deep learning model visualization plugin for rapid and accurate automatic quantification and classification of lumbar disc herniation (LDH) types on axial T2-weighted MRIs.</p><p><strong>Methods: </strong>Retrospective analysis of 2500 patients, with the training set comprising data from 2120 patients (25,554 images), an internal test set covering data from 80 patients (784 images), and an external test set including data from 300 patients (3285 images). To enhance implementation, this study categorized normal and bulging discs as a grade without significant abnormalities, defining the region and severity grades of LDH based on the relationship between the disc and the spinal canal. The automated detection training and validation process employed the YOLOv8 object detection model for target area localization, the YOLOv8-seg segmentation model for disc recognition, and the YOLOv8-pose keypoint detection model for positioning. Finally, the stability of the detection results was verified using metrics such as Intersection over Union (IoU), mean error (ME), precision (P), F1 score (F1), Kappa coefficient (kappa), and 95% confidence interval (95%CI).</p><p><strong>Results: </strong>The segmentation model achieved an mAP50:95 of 98.12% and an IoU of 98.36% in the training set, while the keypoint detection model achieved an mAP50:95 of 93.58% with a mean error (ME) of 0.208 mm. For the internal and external test sets, the segmentation model's IoU was 97.58 and 97.49%, respectively, while the keypoint model's ME was 0.219 mm and 0.221 mm, respectively. In the quantification validation of the extent of LDH, P, F1, and kappa were measured. For LDH classification (18 categories), the internal and external test sets showed P = 81.21% and 74.50%, F1 = 81.26% and 74.42%, and kappa = 0.75 (95%CI 0.68, 0.82, p = 0.00) and 0.69 (95%CI 0.65, 0.73, p = 0.00), respectively. For the severity grades of LDH (four categories), the internal and external test sets showed P = 92.51% and 90.07%, F1 = 92.36% and 89.66%, and kappa = 0.88 (95%CI 0.80, 0.96, p = 0.00) and 0.85 (95%CI 0.81, 0.89, p = 0.00), respectively. For the regions of LDH (eight categories), the internal and external test sets showed P = 83.34% and 77.87%, F1 = 83.85% and 78.21%, and kappa = 0.77 (95%CI 0.70, 0.85, p = 0.00) and 0.71 (95%CI 0.67, 0.75, p = 0.00), respectively.</p><p><strong>Conclusion: </strong>The automated aided diagnostic model achieved high performance in detecting and classifying LDH and demonstrated substantial consistency with expert classification.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-01996-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Application of a deep learning model visualization plugin for rapid and accurate automatic quantification and classification of lumbar disc herniation (LDH) types on axial T2-weighted MRIs.
Methods: Retrospective analysis of 2500 patients, with the training set comprising data from 2120 patients (25,554 images), an internal test set covering data from 80 patients (784 images), and an external test set including data from 300 patients (3285 images). To enhance implementation, this study categorized normal and bulging discs as a grade without significant abnormalities, defining the region and severity grades of LDH based on the relationship between the disc and the spinal canal. The automated detection training and validation process employed the YOLOv8 object detection model for target area localization, the YOLOv8-seg segmentation model for disc recognition, and the YOLOv8-pose keypoint detection model for positioning. Finally, the stability of the detection results was verified using metrics such as Intersection over Union (IoU), mean error (ME), precision (P), F1 score (F1), Kappa coefficient (kappa), and 95% confidence interval (95%CI).
Results: The segmentation model achieved an mAP50:95 of 98.12% and an IoU of 98.36% in the training set, while the keypoint detection model achieved an mAP50:95 of 93.58% with a mean error (ME) of 0.208 mm. For the internal and external test sets, the segmentation model's IoU was 97.58 and 97.49%, respectively, while the keypoint model's ME was 0.219 mm and 0.221 mm, respectively. In the quantification validation of the extent of LDH, P, F1, and kappa were measured. For LDH classification (18 categories), the internal and external test sets showed P = 81.21% and 74.50%, F1 = 81.26% and 74.42%, and kappa = 0.75 (95%CI 0.68, 0.82, p = 0.00) and 0.69 (95%CI 0.65, 0.73, p = 0.00), respectively. For the severity grades of LDH (four categories), the internal and external test sets showed P = 92.51% and 90.07%, F1 = 92.36% and 89.66%, and kappa = 0.88 (95%CI 0.80, 0.96, p = 0.00) and 0.85 (95%CI 0.81, 0.89, p = 0.00), respectively. For the regions of LDH (eight categories), the internal and external test sets showed P = 83.34% and 77.87%, F1 = 83.85% and 78.21%, and kappa = 0.77 (95%CI 0.70, 0.85, p = 0.00) and 0.71 (95%CI 0.67, 0.75, p = 0.00), respectively.
Conclusion: The automated aided diagnostic model achieved high performance in detecting and classifying LDH and demonstrated substantial consistency with expert classification.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.