Enhancing D-lactic acid production from methane through metabolic engineering of Methylomonas sp. DH-1.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Seungwoo Cha, Jae-Hwan Jo, Jong Kwan Lee, Wooyoung Park, Myounghoon Moon, Gwon Woo Park, Min-Sik Kim, Ji-Sook Hahn
{"title":"Enhancing D-lactic acid production from methane through metabolic engineering of Methylomonas sp. DH-1.","authors":"Seungwoo Cha, Jae-Hwan Jo, Jong Kwan Lee, Wooyoung Park, Myounghoon Moon, Gwon Woo Park, Min-Sik Kim, Ji-Sook Hahn","doi":"10.1186/s12934-025-02695-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methane is an abundant and low-cost carbon source with great potential for conversion into value-added chemicals. Methanotrophs, microorganisms that utilize methane as their sole carbon and energy source, present a promising platform for biotechnological applications. This study aimed to engineer Methylomonas sp. DH-1 to enhance D-LA production through metabolic pathway optimization during large-scale cultivation.</p><p><strong>Results: </strong>In this study, we regulated the expression of D-lactate dehydrogenase (D-LDH) using a Ptac promoter with IPTG induction to mitigate the toxic effects of lactate accumulation. To further optimize carbon flow away from glycogen, the glgA gene was deleted. However, this modification led to growth inhibition, especially during scale-up, likely due to the accumulation of ADP-glucose caused by the rewired carbon flux under carbon-excess conditions. Deleting the glgC gene, which encodes glucose 1-phosphate adenylyltransferase, alleviated this issue. The final optimized strain, JHM805, achieved a D-LA production of 6.17 g/L in a 5-L bioreactor, with a productivity of 0.057 g/L/h, marking a significant improvement in D-LA production from methane.</p><p><strong>Conclusions: </strong>The metabolic engineering strategies employed in this study, including the use of an inducible promoter and alleviation of ADP-glucose accumulation toxicity, successfully enhanced the ability of the strain to produce D-LA from methane. Furthermore, optimizing the bioreactor fermentation process through methane and nitrate supplementation resulted in a significant increase in both the titer and productivity, exceeding previously reported values.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"70"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02695-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Methane is an abundant and low-cost carbon source with great potential for conversion into value-added chemicals. Methanotrophs, microorganisms that utilize methane as their sole carbon and energy source, present a promising platform for biotechnological applications. This study aimed to engineer Methylomonas sp. DH-1 to enhance D-LA production through metabolic pathway optimization during large-scale cultivation.

Results: In this study, we regulated the expression of D-lactate dehydrogenase (D-LDH) using a Ptac promoter with IPTG induction to mitigate the toxic effects of lactate accumulation. To further optimize carbon flow away from glycogen, the glgA gene was deleted. However, this modification led to growth inhibition, especially during scale-up, likely due to the accumulation of ADP-glucose caused by the rewired carbon flux under carbon-excess conditions. Deleting the glgC gene, which encodes glucose 1-phosphate adenylyltransferase, alleviated this issue. The final optimized strain, JHM805, achieved a D-LA production of 6.17 g/L in a 5-L bioreactor, with a productivity of 0.057 g/L/h, marking a significant improvement in D-LA production from methane.

Conclusions: The metabolic engineering strategies employed in this study, including the use of an inducible promoter and alleviation of ADP-glucose accumulation toxicity, successfully enhanced the ability of the strain to produce D-LA from methane. Furthermore, optimizing the bioreactor fermentation process through methane and nitrate supplementation resulted in a significant increase in both the titer and productivity, exceeding previously reported values.

通过甲基单胞菌 DH-1 的代谢工程提高甲烷中 D-乳酸的产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信