{"title":"Magnetic Levitational Assembly of Differentiated SH-SY5Y Cells for Aβ-Induced 3D Alzheimer's Disease Modeling and Curcumin Screening.","authors":"Rumeysa Bilginer-Kartal, Ahu Arslan-Yildiz","doi":"10.1002/mabi.202400658","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is one of the prevalent neurodegenerative diseases and is characterized by amyloid beta aggregate (Aβ) accumulation. This study reports an Aβ 1-42 induced 3D Alzheimer's disease modeling utilizing differentiated SH-SY5Y spheroids, which is carried out by Magnetic levitation approach, and the neuroprotective effect of Curcumin is further investigated on this model. For this purpose, SH-SY5Y spheroids are differentiated using Retinoic acid-Brain-derived neurotrophic factor sequentially during 3D cell culture. Differentiated spheroids maintained high viability and exhibited significant neuronal characteristics, as evidenced by increasing β-III tubulin and NeuN expressions. 3D Alzheimer's disease model formation and neurotoxicity of Aβ 1-42 aggregates are investigated on un-/differentiated spheroids, resulting in 65% and 51% cell viability, respectively. Characterization of the 3D Alzheimer's disease model is done by immunostaining of Choline acetyltransferase to investigate cholinergic neuron activity loss, showing a 2.2 decrease in fluorescence intensity. Further, Curcumin treatment on the 3D Alzheimer's disease model resulted in augmenting cell viability, confirming neuroprotective effect of Curcumin on Aβ 1-42 induced Alzheimer's disease model. This study highlighted the magnetic levitation-based fabrication of Aβ 1-42-induced 3D Alzheimer's disease model successfully, offering a promising experimental platform for other neurodegenerative disease research and potential clinical applications.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400658"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400658","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease is one of the prevalent neurodegenerative diseases and is characterized by amyloid beta aggregate (Aβ) accumulation. This study reports an Aβ 1-42 induced 3D Alzheimer's disease modeling utilizing differentiated SH-SY5Y spheroids, which is carried out by Magnetic levitation approach, and the neuroprotective effect of Curcumin is further investigated on this model. For this purpose, SH-SY5Y spheroids are differentiated using Retinoic acid-Brain-derived neurotrophic factor sequentially during 3D cell culture. Differentiated spheroids maintained high viability and exhibited significant neuronal characteristics, as evidenced by increasing β-III tubulin and NeuN expressions. 3D Alzheimer's disease model formation and neurotoxicity of Aβ 1-42 aggregates are investigated on un-/differentiated spheroids, resulting in 65% and 51% cell viability, respectively. Characterization of the 3D Alzheimer's disease model is done by immunostaining of Choline acetyltransferase to investigate cholinergic neuron activity loss, showing a 2.2 decrease in fluorescence intensity. Further, Curcumin treatment on the 3D Alzheimer's disease model resulted in augmenting cell viability, confirming neuroprotective effect of Curcumin on Aβ 1-42 induced Alzheimer's disease model. This study highlighted the magnetic levitation-based fabrication of Aβ 1-42-induced 3D Alzheimer's disease model successfully, offering a promising experimental platform for other neurodegenerative disease research and potential clinical applications.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.