Spin polaron in a chiral molecule with an all quantum model.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Zhaoyang Wang, Xuan Liu, Jing Yang, Mengzhao Du, Sun Yin, Shijie Xie
{"title":"Spin polaron in a chiral molecule with an all quantum model.","authors":"Zhaoyang Wang, Xuan Liu, Jing Yang, Mengzhao Du, Sun Yin, Shijie Xie","doi":"10.1088/1361-648X/adc4a7","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the chiral induced spin selectivity (CISS) has been demonstrated in different systems such as DNA, proteins, bacteriorhodopsin, helicene and other chiral molecules. In this phenomenon, the spin of the carriers will couple with the chirality of the system and exhibit special transport properties. The explanation of the mechanisms of CISS is still under debating, but it generally accepted that the chirality-induced spin-orbit coupling and the environment play pivotal roles. In addition, in such systems with strong electron-phonon coupling, the moving electrons and holes would interact with phonons to construct polarons as carriers. Therefore, to understand CISS it is needed to focus on the spin-related transport of the polarons. In this paper, we investigate the spin-charge property of a carrier in a chiral helix molecule described with an all-quantum model. Both the extended electron and bound states are obtained analytically. Our findings indicate that the spin and momentum of these carriers are locked, with the nature of this coupling being dictated by the chirality of the system. This work provides valuable insights for theoretical investigations into nonlinear equations and contributes to a deeper understanding of chiral carriers in the context of the CISS effect. Our solution is instructive for theoretical investigation on nonlinear excitations and our results shed new light on the chiral carriers to understand CISS effect.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc4a7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the chiral induced spin selectivity (CISS) has been demonstrated in different systems such as DNA, proteins, bacteriorhodopsin, helicene and other chiral molecules. In this phenomenon, the spin of the carriers will couple with the chirality of the system and exhibit special transport properties. The explanation of the mechanisms of CISS is still under debating, but it generally accepted that the chirality-induced spin-orbit coupling and the environment play pivotal roles. In addition, in such systems with strong electron-phonon coupling, the moving electrons and holes would interact with phonons to construct polarons as carriers. Therefore, to understand CISS it is needed to focus on the spin-related transport of the polarons. In this paper, we investigate the spin-charge property of a carrier in a chiral helix molecule described with an all-quantum model. Both the extended electron and bound states are obtained analytically. Our findings indicate that the spin and momentum of these carriers are locked, with the nature of this coupling being dictated by the chirality of the system. This work provides valuable insights for theoretical investigations into nonlinear equations and contributes to a deeper understanding of chiral carriers in the context of the CISS effect. Our solution is instructive for theoretical investigation on nonlinear excitations and our results shed new light on the chiral carriers to understand CISS effect.

全量子模型手性分子中的自旋极化子。
近年来,手性诱导自旋选择性(CISS)在DNA、蛋白质、细菌视紫红质、螺旋蛋白等手性分子体系中得到了广泛的应用。在这种现象中,载流子的自旋将与体系的手性耦合,并表现出特殊的输运性质。对CISS机理的解释仍有争议,但普遍认为手性诱导的自旋-轨道耦合和环境起关键作用。此外,在这种具有强电子-声子耦合的系统中,运动的电子和空穴会与声子相互作用,形成极化子作为载流子。因此,为了理解CISS,需要关注极化子的自旋相关输运。本文研究了用全量子模型描述的手性螺旋分子中载流子的自旋电荷性质。扩展电子态和束缚态都是解析得到的。我们的发现表明,这些载流子的自旋和动量是锁定的,这种耦合的性质是由系统的手性决定的。这项工作为非线性方程的理论研究提供了有价值的见解,并有助于在CISS效应的背景下更深入地理解手性载流子。我们的解对非线性激励的理论研究具有指导意义,我们的结果对手性载流子理解CISS效应有新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信