In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy.
IF 10.6 1区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy.","authors":"Xiqian Cao, Lingwei Mao, Yijun Tian, Lang Yan, Bijiang Geng, Yingtang Zhou, Jiangbo Zhu","doi":"10.1186/s12951-025-03334-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cuproptosis, a novel approach utilizing copper carriers to trigger programmed cell death, exhibits promise for enhancing traditional therapies and activating robust adaptive immune responses. However, the uncontrolled release of Cu ions risks triggering cuproptosis in healthy tissues, potentially causing irreversible damage. To address this, we report on the use of a Cu-MOF (copper metal-organic framework) protective layer to regulate the biodegradation of copper-based nanomaterials. In situ formation of Cu-MOF on Cu<sub>2</sub>O nanocubes not only stabilizes the material under physiological conditions but also enhances its sonodynamic therapy (SDT) capabilities by establishing a Z-Scheme heterojunction. Upon SDT activation, the targeted Cu ion release at the tumor site triggers a cascade of reactions, generating reactive oxygen species (ROS) via Fenton-like processes and depleting glutathione (GSH). This ROS surge, combined with effective cuproptosis, modulates the immunosuppressive tumor microenvironment, inducing immunogenic cell death to eliminate primary tumors and inhibit metastasis. This study offers a new paradigm for the controlled integration of SDT, chemodynamic therapy (CDT), cuproptosis, and immunotherapy, achieving precise tumor-targeted treatment via controlled copper nanomaterial degradation.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"246"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03334-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cuproptosis, a novel approach utilizing copper carriers to trigger programmed cell death, exhibits promise for enhancing traditional therapies and activating robust adaptive immune responses. However, the uncontrolled release of Cu ions risks triggering cuproptosis in healthy tissues, potentially causing irreversible damage. To address this, we report on the use of a Cu-MOF (copper metal-organic framework) protective layer to regulate the biodegradation of copper-based nanomaterials. In situ formation of Cu-MOF on Cu2O nanocubes not only stabilizes the material under physiological conditions but also enhances its sonodynamic therapy (SDT) capabilities by establishing a Z-Scheme heterojunction. Upon SDT activation, the targeted Cu ion release at the tumor site triggers a cascade of reactions, generating reactive oxygen species (ROS) via Fenton-like processes and depleting glutathione (GSH). This ROS surge, combined with effective cuproptosis, modulates the immunosuppressive tumor microenvironment, inducing immunogenic cell death to eliminate primary tumors and inhibit metastasis. This study offers a new paradigm for the controlled integration of SDT, chemodynamic therapy (CDT), cuproptosis, and immunotherapy, achieving precise tumor-targeted treatment via controlled copper nanomaterial degradation.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.