In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiqian Cao, Lingwei Mao, Yijun Tian, Lang Yan, Bijiang Geng, Yingtang Zhou, Jiangbo Zhu
{"title":"In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy.","authors":"Xiqian Cao, Lingwei Mao, Yijun Tian, Lang Yan, Bijiang Geng, Yingtang Zhou, Jiangbo Zhu","doi":"10.1186/s12951-025-03334-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cuproptosis, a novel approach utilizing copper carriers to trigger programmed cell death, exhibits promise for enhancing traditional therapies and activating robust adaptive immune responses. However, the uncontrolled release of Cu ions risks triggering cuproptosis in healthy tissues, potentially causing irreversible damage. To address this, we report on the use of a Cu-MOF (copper metal-organic framework) protective layer to regulate the biodegradation of copper-based nanomaterials. In situ formation of Cu-MOF on Cu<sub>2</sub>O nanocubes not only stabilizes the material under physiological conditions but also enhances its sonodynamic therapy (SDT) capabilities by establishing a Z-Scheme heterojunction. Upon SDT activation, the targeted Cu ion release at the tumor site triggers a cascade of reactions, generating reactive oxygen species (ROS) via Fenton-like processes and depleting glutathione (GSH). This ROS surge, combined with effective cuproptosis, modulates the immunosuppressive tumor microenvironment, inducing immunogenic cell death to eliminate primary tumors and inhibit metastasis. This study offers a new paradigm for the controlled integration of SDT, chemodynamic therapy (CDT), cuproptosis, and immunotherapy, achieving precise tumor-targeted treatment via controlled copper nanomaterial degradation.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"246"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03334-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cuproptosis, a novel approach utilizing copper carriers to trigger programmed cell death, exhibits promise for enhancing traditional therapies and activating robust adaptive immune responses. However, the uncontrolled release of Cu ions risks triggering cuproptosis in healthy tissues, potentially causing irreversible damage. To address this, we report on the use of a Cu-MOF (copper metal-organic framework) protective layer to regulate the biodegradation of copper-based nanomaterials. In situ formation of Cu-MOF on Cu2O nanocubes not only stabilizes the material under physiological conditions but also enhances its sonodynamic therapy (SDT) capabilities by establishing a Z-Scheme heterojunction. Upon SDT activation, the targeted Cu ion release at the tumor site triggers a cascade of reactions, generating reactive oxygen species (ROS) via Fenton-like processes and depleting glutathione (GSH). This ROS surge, combined with effective cuproptosis, modulates the immunosuppressive tumor microenvironment, inducing immunogenic cell death to eliminate primary tumors and inhibit metastasis. This study offers a new paradigm for the controlled integration of SDT, chemodynamic therapy (CDT), cuproptosis, and immunotherapy, achieving precise tumor-targeted treatment via controlled copper nanomaterial degradation.

原位构建异质结以调节肿瘤特异性铜沉淀增强超声免疫治疗中铜载体的生物降解行为。
cuprotosis是一种利用铜载体触发程序性细胞死亡的新方法,有望增强传统疗法并激活强大的适应性免疫反应。然而,不受控制的Cu离子释放有可能引发健康组织中的铜沉淀,潜在地造成不可逆的损伤。为了解决这个问题,我们报道了使用Cu-MOF(铜金属有机框架)保护层来调节铜基纳米材料的生物降解。在Cu2O纳米立方上原位形成Cu-MOF不仅可以在生理条件下稳定材料,还可以通过建立Z-Scheme异质结增强其声动力治疗(SDT)能力。SDT激活后,靶向Cu离子在肿瘤部位释放触发级联反应,通过芬顿样过程产生活性氧(ROS)并消耗谷胱甘肽(GSH)。这种ROS激增,结合有效的cuprotosis,调节免疫抑制性肿瘤微环境,诱导免疫原性细胞死亡,消除原发肿瘤,抑制转移。该研究为SDT、化学动力学治疗(CDT)、铜移植和免疫治疗的控制整合提供了一个新的范例,通过控制铜纳米材料的降解实现精确的肿瘤靶向治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信