Dissection of photosynthetic short and long-term acclimation to fluctuating light reveals specific functions within the chloroplast thioredoxin network.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Dejan Dziubek, Louis Poeker, Luca Jäger, Martin Lehmann, Dario Leister, Ute Armbruster, Peter Geigenberger
{"title":"Dissection of photosynthetic short and long-term acclimation to fluctuating light reveals specific functions within the chloroplast thioredoxin network.","authors":"Dejan Dziubek, Louis Poeker, Luca Jäger, Martin Lehmann, Dario Leister, Ute Armbruster, Peter Geigenberger","doi":"10.1093/jxb/eraf121","DOIUrl":null,"url":null,"abstract":"<p><p>Thioredoxins (TRX) play an important role in controlling photosynthetic acclimation to fluctuating light (FL), while the underlying mechanisms remain unclear. Here we used Arabidopsis mutants lacking NADPH-dependent TRX-reductase C (NTRC) or parts of the light-dependent TRX systems to investigate specific functions of this network in FL. In the wildtype, photosynthetic acclimation required three days to develop and stabilized after five days of growth in FL. In the ntrc mutant, these acclimation responses were strongly attenuated, leading to decreased PSII acceptor availability, increased non-photochemical quenching (NPQ) and impaired PSII quantum efficiency. Moreover, PSI performance decreased, while acceptor-side limitation of PSI increased. This was due to a specifically strong decline in the reduction states of 2-Cys-peroxiredoxins and fructose-1,6-bisphosphatase, resulting in decreased CO2-fixation rates and delayed relaxation of NPQ in the low-light phases of FL. Since this was not reflected by changes in de-epoxidation of violaxanthin, state transition or chlorophyll a level, ntrc mutants showed an apparent lack of photoprotective responses that may explain their increased vulnerability under prolonged growth in FL. Results show that NADPH-dependent NTRC is balancing chloroplast redox-systems and Calvin-Benson-cycle activity during prolonged light variability, to optimize PSI, PSII and water-use efficiency, while having no direct effect on photoprotective mechanisms.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Thioredoxins (TRX) play an important role in controlling photosynthetic acclimation to fluctuating light (FL), while the underlying mechanisms remain unclear. Here we used Arabidopsis mutants lacking NADPH-dependent TRX-reductase C (NTRC) or parts of the light-dependent TRX systems to investigate specific functions of this network in FL. In the wildtype, photosynthetic acclimation required three days to develop and stabilized after five days of growth in FL. In the ntrc mutant, these acclimation responses were strongly attenuated, leading to decreased PSII acceptor availability, increased non-photochemical quenching (NPQ) and impaired PSII quantum efficiency. Moreover, PSI performance decreased, while acceptor-side limitation of PSI increased. This was due to a specifically strong decline in the reduction states of 2-Cys-peroxiredoxins and fructose-1,6-bisphosphatase, resulting in decreased CO2-fixation rates and delayed relaxation of NPQ in the low-light phases of FL. Since this was not reflected by changes in de-epoxidation of violaxanthin, state transition or chlorophyll a level, ntrc mutants showed an apparent lack of photoprotective responses that may explain their increased vulnerability under prolonged growth in FL. Results show that NADPH-dependent NTRC is balancing chloroplast redox-systems and Calvin-Benson-cycle activity during prolonged light variability, to optimize PSI, PSII and water-use efficiency, while having no direct effect on photoprotective mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信