Optimized single-beam modulation argon ion milling for TEM cross-sectional specimens of nanostructured interfaces.

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Xiangtao Luo, Sujuan Ding, Haozhe Lu, Chuanhong Jin
{"title":"Optimized single-beam modulation argon ion milling for TEM cross-sectional specimens of nanostructured interfaces.","authors":"Xiangtao Luo, Sujuan Ding, Haozhe Lu, Chuanhong Jin","doi":"10.1111/jmi.13406","DOIUrl":null,"url":null,"abstract":"<p><p>High-quality transmission electron microscopy (TEM) specimens are critical for high-resolution imaging and conducting electron energy loss spectroscopy (EELS) analysis. However, fabricating cross-sectional TEM specimens with large, thin, and low-damage regions remains challenging, particularly with conventional mechanical polishing and Ar<sup>+</sup> ion-beam milling methods. Here, we propose an optimised method based on Ar<sup>+</sup> ion-beam milling that precisely maintains the consistency of the sample's thickness after mechanical polishing and fine-tunes Ar<sup>+</sup> ion-beam milling parameters. Appropriately chosen milling parameters through real-time monitoring minimise the damaged layer's thickness, while optimised parameters reduce the redeposition of sputtered material. Applied to interfaces such as those between aligned carbon nanotube arrays (A-CNTs) and gate dielectrics key to next-generation nanoelectronics, we achieved samples with a 30 µm wide thin region, the thinnest area reaching 15 nm, preserving structural integrity and yielding a well-defined CNT-HfO<sub>2</sub> interface. Notably, redeposition was reduced from 44.4% to 6.6%, and single-beam modulation enabled these extensive thin regions, outperforming dual-beam methods.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality transmission electron microscopy (TEM) specimens are critical for high-resolution imaging and conducting electron energy loss spectroscopy (EELS) analysis. However, fabricating cross-sectional TEM specimens with large, thin, and low-damage regions remains challenging, particularly with conventional mechanical polishing and Ar+ ion-beam milling methods. Here, we propose an optimised method based on Ar+ ion-beam milling that precisely maintains the consistency of the sample's thickness after mechanical polishing and fine-tunes Ar+ ion-beam milling parameters. Appropriately chosen milling parameters through real-time monitoring minimise the damaged layer's thickness, while optimised parameters reduce the redeposition of sputtered material. Applied to interfaces such as those between aligned carbon nanotube arrays (A-CNTs) and gate dielectrics key to next-generation nanoelectronics, we achieved samples with a 30 µm wide thin region, the thinnest area reaching 15 nm, preserving structural integrity and yielding a well-defined CNT-HfO2 interface. Notably, redeposition was reduced from 44.4% to 6.6%, and single-beam modulation enabled these extensive thin regions, outperforming dual-beam methods.

高质量的透射电子显微镜(TEM)试样对于高分辨率成像和进行电子能量损失光谱(EELS)分析至关重要。然而,制作具有大、薄和低损伤区域的横截面 TEM 试样仍然具有挑战性,特别是使用传统的机械抛光和 Ar+ 离子束铣削方法。在此,我们提出了一种基于 Ar+ 离子束铣削的优化方法,它能在机械抛光后精确保持样品厚度的一致性,并微调 Ar+ 离子束铣削参数。通过实时监控选择适当的铣削参数,可将受损层的厚度降至最低,而优化的参数则可减少溅射材料的再沉积。在应用于诸如对齐碳纳米管阵列(A-CNT)与下一代纳米电子学关键的栅极电介质之间的界面时,我们获得了 30 µm 宽的薄区样品,最薄的区域达到 15 nm,保持了结构的完整性,并产生了定义明确的 CNT-HfO2 界面。值得注意的是,再沉积率从 44.4% 降至 6.6%,单光束调制实现了这些大面积薄区,优于双光束方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信