DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Xiaoyi Yu, Donglin Zhu, Hongjie Guo, Changjun Zhou, Mohammed A M Elhassan, Mengzhen Wang
{"title":"DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading.","authors":"Xiaoyi Yu, Donglin Zhu, Hongjie Guo, Changjun Zhou, Mohammed A M Elhassan, Mengzhen Wang","doi":"10.1007/s12539-025-00693-8","DOIUrl":null,"url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is the most common form of renal cell carcinoma in adults, comprising approximately 80% of cases. The lethality of ccRCC rises significantly at stage III or beyond, emphasizing the need for early detection to enable timely therapeutic interventions. This study introduces a non-invasive and efficient classification method, Domain Adaptive Squeeze-and-Excitation Network (DASNet), for grading ccRCC through Computed Tomography (CT) images using advanced deep learning and machine learning techniques. The dataset is enhanced using MedAugment technology and balanced to improve generalization and classification performance. To mitigate overfitting, renal angiomyolipoma (AML) samples are incorporated, increasing data diversity and model robustness. EfficientNet and RegNet serve as foundational models, leveraging local feature extraction and Squeeze-and-Excitation (SE) attention mechanisms to enhance recognition accuracy across grades. Furthermore, Domain-Adversarial Neural Networks (DANNs) are employed to maintain consistency between source and target domains, bolstering the model's generalization ability. The proposed model achieves a classification accuracy of 97.50%, demonstrating efficacy in early ccRCC grade identification. These findings not only offer valuable clinical insights but also establish a foundation for broader application of deep learning in tumor detection.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00693-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common form of renal cell carcinoma in adults, comprising approximately 80% of cases. The lethality of ccRCC rises significantly at stage III or beyond, emphasizing the need for early detection to enable timely therapeutic interventions. This study introduces a non-invasive and efficient classification method, Domain Adaptive Squeeze-and-Excitation Network (DASNet), for grading ccRCC through Computed Tomography (CT) images using advanced deep learning and machine learning techniques. The dataset is enhanced using MedAugment technology and balanced to improve generalization and classification performance. To mitigate overfitting, renal angiomyolipoma (AML) samples are incorporated, increasing data diversity and model robustness. EfficientNet and RegNet serve as foundational models, leveraging local feature extraction and Squeeze-and-Excitation (SE) attention mechanisms to enhance recognition accuracy across grades. Furthermore, Domain-Adversarial Neural Networks (DANNs) are employed to maintain consistency between source and target domains, bolstering the model's generalization ability. The proposed model achieves a classification accuracy of 97.50%, demonstrating efficacy in early ccRCC grade identification. These findings not only offer valuable clinical insights but also establish a foundation for broader application of deep learning in tumor detection.

透明细胞肾细胞癌(ccRCC)是成人肾细胞癌中最常见的一种,约占病例总数的 80%。ccRCC的致死率在III期或III期以上显著上升,因此需要早期检测,以便及时采取治疗干预措施。本研究采用先进的深度学习和机器学习技术,通过计算机断层扫描(CT)图像引入了一种无创高效的分类方法--域自适应挤压激发网络(DASNet),用于对ccRCC进行分级。该数据集利用 MedAugment 技术进行了增强和平衡,以提高泛化和分类性能。为了减少过拟合,还纳入了肾血管肌脂肪瘤(AML)样本,从而增加了数据多样性和模型的鲁棒性。EfficientNet 和 RegNet 作为基础模型,利用局部特征提取和挤压激发(SE)注意机制来提高不同等级的识别准确率。此外,还采用了领域对抗神经网络(DANNs)来保持源领域和目标领域之间的一致性,从而增强了模型的泛化能力。所提出的模型达到了 97.50% 的分类准确率,证明了在早期 ccRCC 等级识别方面的有效性。这些发现不仅提供了有价值的临床见解,还为深度学习在肿瘤检测中的更广泛应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信