Transcriptomic temperature stress responses show differentiation between biomes for diverse plants.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Samuel C Andrew, Rosalie J Harris, Chris Coppin, Adrienne B Nicotra, Andrea Leigh, Karel Mokany
{"title":"Transcriptomic temperature stress responses show differentiation between biomes for diverse plants.","authors":"Samuel C Andrew, Rosalie J Harris, Chris Coppin, Adrienne B Nicotra, Andrea Leigh, Karel Mokany","doi":"10.1093/gbe/evaf056","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are foundational to terrestrial ecosystems and because they are sessile, are particularly reliant on physiological plasticity to respond to weather extremes. However, variation in conserved transcriptomic responses to temperature extremes are not well described across plants from contrasting environments. Beyond molecular responses, photosystem II (PSII) thermal tolerance traits are widely used to assay plant thermal tolerance. To explore options for improving the prediction of thermal tolerance capacity we investigated variation in the transcriptomic stress responses of 20 native Australian plants species from varied environments, using de novo transcriptome assemblies and 188 RNA-seq libraries. We documented gene expression responses for biological processes, to both hot and cold temperature treatments, that were consistent with conserved transcriptomic stress responses seen in model species. The pathways with the most significant responses were generally related to signalling and stress responses. The magnitude of some responses showed differentiation between the species from contrasting arid, alpine and temperate biomes. This variation among biomes indicated that post heat exposure, alpine and temperate species had greater shifts in expression than arid species and alpine species had weaker responses to the cold treatment. Changes in the median expression of biological processes were also compared to plasticity in PSII heat and cold tolerance traits. Gene expression responses showed some expected relationships with PSII thermal tolerance plasticity, but these two response types appeared to be mostly independent. Our findings demonstrate the potential for using variation in conserved transcriptomic traits to characterize the sensitivity of plants from diverse taxa to temperature extremes.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are foundational to terrestrial ecosystems and because they are sessile, are particularly reliant on physiological plasticity to respond to weather extremes. However, variation in conserved transcriptomic responses to temperature extremes are not well described across plants from contrasting environments. Beyond molecular responses, photosystem II (PSII) thermal tolerance traits are widely used to assay plant thermal tolerance. To explore options for improving the prediction of thermal tolerance capacity we investigated variation in the transcriptomic stress responses of 20 native Australian plants species from varied environments, using de novo transcriptome assemblies and 188 RNA-seq libraries. We documented gene expression responses for biological processes, to both hot and cold temperature treatments, that were consistent with conserved transcriptomic stress responses seen in model species. The pathways with the most significant responses were generally related to signalling and stress responses. The magnitude of some responses showed differentiation between the species from contrasting arid, alpine and temperate biomes. This variation among biomes indicated that post heat exposure, alpine and temperate species had greater shifts in expression than arid species and alpine species had weaker responses to the cold treatment. Changes in the median expression of biological processes were also compared to plasticity in PSII heat and cold tolerance traits. Gene expression responses showed some expected relationships with PSII thermal tolerance plasticity, but these two response types appeared to be mostly independent. Our findings demonstrate the potential for using variation in conserved transcriptomic traits to characterize the sensitivity of plants from diverse taxa to temperature extremes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信