Shuai Zhang, Yongxi Zhang, Sijia Feng, Miaomiao Han, Zixi Wang, Dan Qiao, Jiaqi Tian, Lan Wang, Baoshun Du, Zheying Zhang, Jiateng Zhong
{"title":"Tumor-promoting effect and tumor immunity of SRSFs.","authors":"Shuai Zhang, Yongxi Zhang, Sijia Feng, Miaomiao Han, Zixi Wang, Dan Qiao, Jiaqi Tian, Lan Wang, Baoshun Du, Zheying Zhang, Jiateng Zhong","doi":"10.3389/fcell.2025.1527309","DOIUrl":null,"url":null,"abstract":"<p><p>Serine/arginine-rich splicing factors (SRSFs) are a family of 12 RNA-binding proteins crucial for the precursor messenger RNA (pre-mRNA) splicing. SRSFs are involved in RNA metabolism events such as transcription, translation, and nonsense decay during the shuttle between the nucleus and cytoplasm, which are important components of genome diversity and cell viability. SRs recognize splicing elements on pre-mRNA and recruit the spliceosome to regulate splicing. In tumors, aberrant expression of SRSFs leads to aberrant splicing of RNA, affecting the proliferation, migration, and anti-apoptotic ability of tumor cells, highlighting the therapeutic potential of targeted SRSFs for the treatment of diseases. The body's immune system is closely related to the occurrence and development of tumor, and SRSFs can affect the function of immune cells in the tumor microenvironment by regulating the alternative splicing of tumor immune-related genes. We review the important role of SRSFs-induced aberrant gene expression in a variety of tumors and the immune system, and prospect the application of SRSFs in tumor. We hope that this review will inform future treatment of the disease.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1527309"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1527309","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Serine/arginine-rich splicing factors (SRSFs) are a family of 12 RNA-binding proteins crucial for the precursor messenger RNA (pre-mRNA) splicing. SRSFs are involved in RNA metabolism events such as transcription, translation, and nonsense decay during the shuttle between the nucleus and cytoplasm, which are important components of genome diversity and cell viability. SRs recognize splicing elements on pre-mRNA and recruit the spliceosome to regulate splicing. In tumors, aberrant expression of SRSFs leads to aberrant splicing of RNA, affecting the proliferation, migration, and anti-apoptotic ability of tumor cells, highlighting the therapeutic potential of targeted SRSFs for the treatment of diseases. The body's immune system is closely related to the occurrence and development of tumor, and SRSFs can affect the function of immune cells in the tumor microenvironment by regulating the alternative splicing of tumor immune-related genes. We review the important role of SRSFs-induced aberrant gene expression in a variety of tumors and the immune system, and prospect the application of SRSFs in tumor. We hope that this review will inform future treatment of the disease.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.