{"title":"Mannosamine-Engineered Nanoparticles for Precision Rifapentine Delivery to Macrophages: Advancing Targeted Therapy Against Mycobacterium Tuberculosis.","authors":"Haopeng Luan, Cong Peng, Parhat Yasin, Qisong Shang, Wei Xiang, Xinghua Song","doi":"10.2147/DDDT.S505682","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death among infectious diseases. Enhancing the ability of anti-tuberculosis drugs to eradicate Mycobacterium tuberculosis within host cells remains a significant challenge.</p><p><strong>Methods: </strong>A mannosamine-modified nanoparticle delivery system was developed using poly(lactic-co-glycolic acid) (PLGA) copolymers to enhance the targeted delivery of rifapentine (RPT) to macrophages. D-mannosamine was conjugated to PLGA-polyethylene glycol (PLGA-PEG) copolymers through EDC/NHS coupling chemistry, and the resultant RPT-MAN-PLGA-PEG nanoparticles (NPs) were prepared through a combination of phacoemulsification and solvent evaporation methods. The physicochemical properties, toxicity, in vitro drug release profiles, stability, cellular uptake, and anti-TB efficacy of the NPs were systematically evaluated.</p><p><strong>Results: </strong>The RPT-MAN-PLGA-PEG NPs had a mean particle size of 108.2 ± 7.2 nm, with encapsulation efficiency and drug loading rates of 81.2 ± 6.3% and 13.7 ± 0.7%, respectively. RPT release from the NPs was sustained for over 60 hours. Notably, the phagocytic uptake of the MAN-PLGA NPs by macrophages was significantly higher compared to PLGA-PEG NPs. Both NPs improved pharmacokinetic parameters without inducing significant organ toxicity. The minimum inhibitory concentration for the NPs was 0.047 μg/mL, compared to 0.2 μg/mL for free RPT.</p><p><strong>Conclusion: </strong>The engineered RPT-MAN-PLGA-PEG NPs effectively enhanced macrophage uptake in vitro and facilitated the intracellular clearance of Mtb. This nanoparticle-based delivery system offers a promising approach for improving the precision of anti-TB therapy, extending drug release, optimizing pharmacokinetic profiles, augmenting antimicrobial efficacy, and mitigating drug-related toxicities.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"2081-2102"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S505682","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death among infectious diseases. Enhancing the ability of anti-tuberculosis drugs to eradicate Mycobacterium tuberculosis within host cells remains a significant challenge.
Methods: A mannosamine-modified nanoparticle delivery system was developed using poly(lactic-co-glycolic acid) (PLGA) copolymers to enhance the targeted delivery of rifapentine (RPT) to macrophages. D-mannosamine was conjugated to PLGA-polyethylene glycol (PLGA-PEG) copolymers through EDC/NHS coupling chemistry, and the resultant RPT-MAN-PLGA-PEG nanoparticles (NPs) were prepared through a combination of phacoemulsification and solvent evaporation methods. The physicochemical properties, toxicity, in vitro drug release profiles, stability, cellular uptake, and anti-TB efficacy of the NPs were systematically evaluated.
Results: The RPT-MAN-PLGA-PEG NPs had a mean particle size of 108.2 ± 7.2 nm, with encapsulation efficiency and drug loading rates of 81.2 ± 6.3% and 13.7 ± 0.7%, respectively. RPT release from the NPs was sustained for over 60 hours. Notably, the phagocytic uptake of the MAN-PLGA NPs by macrophages was significantly higher compared to PLGA-PEG NPs. Both NPs improved pharmacokinetic parameters without inducing significant organ toxicity. The minimum inhibitory concentration for the NPs was 0.047 μg/mL, compared to 0.2 μg/mL for free RPT.
Conclusion: The engineered RPT-MAN-PLGA-PEG NPs effectively enhanced macrophage uptake in vitro and facilitated the intracellular clearance of Mtb. This nanoparticle-based delivery system offers a promising approach for improving the precision of anti-TB therapy, extending drug release, optimizing pharmacokinetic profiles, augmenting antimicrobial efficacy, and mitigating drug-related toxicities.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.