The effect of speech masking on the human subcortical response to continuous speech.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-03-24 DOI:10.1523/ENEURO.0561-24.2025
Melissa J Polonenko, Ross K Maddox
{"title":"The effect of speech masking on the human subcortical response to continuous speech.","authors":"Melissa J Polonenko, Ross K Maddox","doi":"10.1523/ENEURO.0561-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory masking-the interference of the encoding and processing of an acoustic stimulus imposed by one or more competing stimuli-is nearly omnipresent in daily life, and presents a critical barrier to many listeners, including people with hearing loss, users of hearing aids and cochlear implants, and people with auditory processing disorders. The perceptual aspects of masking have been actively studied for several decades, and particular emphasis has been placed on masking of speech by other speech sounds. The neural effects of such masking, especially at the subcortical level, have been much less studied, in large part due to the technical limitations of making such measurements. Recent work has allowed estimation of the auditory brainstem response (ABR), whose characteristic waves are linked to specific subcortical areas, to naturalistic speech. In this study, we used those techniques to measure the encoding of speech stimuli that were masked by one or more simultaneous other speech stimuli. We presented listeners with simultaneous speech from one, two, three, or five simultaneous talkers, corresponding to a range of signal-to-noise ratios (SNR; Clean, 0, -3, and -6 dB), and derived the ABR to each talker in the mixture. Each talker in a mixture was treated in turn as a target sound masked by other talkers, making the response quicker to acquire. We found consistently across listeners that ABR wave V amplitudes decreased and latencies increased as the number of competing talkers increased.<b>Significance statement</b> Trying to listen to someone speak in a noisy setting is a common challenge for most people, due to auditory masking. Masking has been studied extensively at the behavioral level, and more recently in the cortex using EEG and other neurophysiological methods. Much less is known, however, about how masking affects speech encoding in the subcortical auditory system. Here we presented listeners with mixtures of simultaneous speech streams ranging from one to five talkers. We used recently developed tools for measuring subcortical speech encoding to determine how the encoding of each speech stream was impacted by the masker speech. We show that the subcortical response to masked speech becomes smaller and increasingly delayed as the masking becomes more severe.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0561-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Auditory masking-the interference of the encoding and processing of an acoustic stimulus imposed by one or more competing stimuli-is nearly omnipresent in daily life, and presents a critical barrier to many listeners, including people with hearing loss, users of hearing aids and cochlear implants, and people with auditory processing disorders. The perceptual aspects of masking have been actively studied for several decades, and particular emphasis has been placed on masking of speech by other speech sounds. The neural effects of such masking, especially at the subcortical level, have been much less studied, in large part due to the technical limitations of making such measurements. Recent work has allowed estimation of the auditory brainstem response (ABR), whose characteristic waves are linked to specific subcortical areas, to naturalistic speech. In this study, we used those techniques to measure the encoding of speech stimuli that were masked by one or more simultaneous other speech stimuli. We presented listeners with simultaneous speech from one, two, three, or five simultaneous talkers, corresponding to a range of signal-to-noise ratios (SNR; Clean, 0, -3, and -6 dB), and derived the ABR to each talker in the mixture. Each talker in a mixture was treated in turn as a target sound masked by other talkers, making the response quicker to acquire. We found consistently across listeners that ABR wave V amplitudes decreased and latencies increased as the number of competing talkers increased.Significance statement Trying to listen to someone speak in a noisy setting is a common challenge for most people, due to auditory masking. Masking has been studied extensively at the behavioral level, and more recently in the cortex using EEG and other neurophysiological methods. Much less is known, however, about how masking affects speech encoding in the subcortical auditory system. Here we presented listeners with mixtures of simultaneous speech streams ranging from one to five talkers. We used recently developed tools for measuring subcortical speech encoding to determine how the encoding of each speech stream was impacted by the masker speech. We show that the subcortical response to masked speech becomes smaller and increasingly delayed as the masking becomes more severe.

求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信