{"title":"Numerical Study of Falling Droplets in a Vertical Electric Field","authors":"Hailong Zhang, Tingting Zhang, Yuxin Lu, Qingzhen Yang, Hui Xing","doi":"10.1002/elps.8136","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>It is of fundamental importance to study and understand the behavior of falling droplets. External fields, such as electric and magnetic fields, are considered promising methods for controlling falling droplets, especially at small scales. Although some experimental and theoretical work on falling droplets in an electric field has been conducted, a fully numerical model for electrohydrodynamic falling droplets is still lacking. In this article, we proposed a phase field numerical model and studied the falling droplets in a vertical electric field. In particular, the influence of the electric field on the velocity and interfacial morphology of the falling droplets was investigated. It was found that the vertical electric field can elongate the droplet in the vertical direction and increase its falling velocity. With a weak or no electric field (the electrical capillary number <i>Ca<sub>E</sub> </i>< 1.0), an indentation appears on the top of the falling droplet, and the droplet evolves into a bowl-like structure. In contrast, a strong electric field (<i>Ca<sub>E</sub></i> ≥ 1.0) causes a protrusion on the droplet, transforming it into a thumbtack-like shape. The numerical model and the obtained results can improve our understanding of falling droplets and highlight potential ways to regulate their behaviors.</p>\n </div>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"46 7-8","pages":"388-403"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.8136","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
It is of fundamental importance to study and understand the behavior of falling droplets. External fields, such as electric and magnetic fields, are considered promising methods for controlling falling droplets, especially at small scales. Although some experimental and theoretical work on falling droplets in an electric field has been conducted, a fully numerical model for electrohydrodynamic falling droplets is still lacking. In this article, we proposed a phase field numerical model and studied the falling droplets in a vertical electric field. In particular, the influence of the electric field on the velocity and interfacial morphology of the falling droplets was investigated. It was found that the vertical electric field can elongate the droplet in the vertical direction and increase its falling velocity. With a weak or no electric field (the electrical capillary number CaE< 1.0), an indentation appears on the top of the falling droplet, and the droplet evolves into a bowl-like structure. In contrast, a strong electric field (CaE ≥ 1.0) causes a protrusion on the droplet, transforming it into a thumbtack-like shape. The numerical model and the obtained results can improve our understanding of falling droplets and highlight potential ways to regulate their behaviors.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.