Kalliopi Violaki, Christos Panagiotopoulos, Claudia Esther Avalos, Pierre Rossi, Ernest Abboud, Maria Kanakidou, Athanasios Nenes
{"title":"Solid-state <sup>31</sup>P NMR reveals the biological organophosphorus compounds as the dominant phosphorus species in Saharan dust aerosols.","authors":"Kalliopi Violaki, Christos Panagiotopoulos, Claudia Esther Avalos, Pierre Rossi, Ernest Abboud, Maria Kanakidou, Athanasios Nenes","doi":"10.1038/s43247-025-02164-w","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus is a critical nutrient affecting primary productivity across all ecosystems. Many regions worldwide are limited or co-limited by phosphorus availability, which can be alleviated through atmospheric deposition. Dust is known to be a key external source of phosphorus in ecosystems, assumed to be in the form of various insoluble inorganic minerals. We show that this view is largely incomplete and here we present conclusive evidence, that organic phosphorus as diesters, primarily associated with biological materials. Phosphate diesters significantly correlated with soil bacteria found in dust, implying a direct link with microbial soil communities, without excluding the eukaryotic cells. Phosphate diesters in dust, along with abundant alkaline phosphatase, may contribute 70% to daily primary productivity in the eastern Mediterranean, highlighting the potential of organic phosphorus substrates present in dust as airborne microorganisms to impact the biogeochemistry of oligotrophic environments via atmospheric deposition.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"225"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02164-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus is a critical nutrient affecting primary productivity across all ecosystems. Many regions worldwide are limited or co-limited by phosphorus availability, which can be alleviated through atmospheric deposition. Dust is known to be a key external source of phosphorus in ecosystems, assumed to be in the form of various insoluble inorganic minerals. We show that this view is largely incomplete and here we present conclusive evidence, that organic phosphorus as diesters, primarily associated with biological materials. Phosphate diesters significantly correlated with soil bacteria found in dust, implying a direct link with microbial soil communities, without excluding the eukaryotic cells. Phosphate diesters in dust, along with abundant alkaline phosphatase, may contribute 70% to daily primary productivity in the eastern Mediterranean, highlighting the potential of organic phosphorus substrates present in dust as airborne microorganisms to impact the biogeochemistry of oligotrophic environments via atmospheric deposition.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.