Respiratory modulation of beta corticomuscular coherence in isometric hand movements.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-03-22 DOI:10.1007/s11571-025-10245-x
Zhibin Li, Jingyao Sun, Tianyu Jia, Linhong Ji, Chong Li
{"title":"Respiratory modulation of beta corticomuscular coherence in isometric hand movements.","authors":"Zhibin Li, Jingyao Sun, Tianyu Jia, Linhong Ji, Chong Li","doi":"10.1007/s11571-025-10245-x","DOIUrl":null,"url":null,"abstract":"<p><p>Respiration is a fundamental physiological function in humans, often synchronized with movement to enhance performance and efficiency. Recent studies have underscored the modulatory effects of respiratory rhythms on brain oscillations and various behavioral responses, including sensorimotor processes. In light of this connection, our study aimed to investigate the influence of different respiratory patterns on beta corticomuscular coherence (CMC) during isometric hand flexion and extension. Utilizing electroencephalogram (EEG) and surface electromyography (sEMG), we examined three breathing conditions: normal breathing, deep inspiration, and deep expiration. Two experimental protocols were employed: the first experiment required participants to simultaneously breathe and exert force, while the other involved maintaining a constant force while varying breathing patterns. The results revealed that deep inspiration significantly enhanced beta CMC during respiration-synchronized tasks, whereas normal breathing resulted in higher CMC compared to deep respiration during sustained force exertion. In the second experiment, beta CMC was cyclically modulated by respiratory phase across all breathing conditions. The difference in the outcomes from the two protocols demonstrated a task-specific modulation of respiration on motor control. Overall, these findings indicate the complex dynamics of respiration-related effects on corticomuscular neural communication and provide valuable insights into the mechanisms underpinning the coupling between respiration and motor function.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-025-10245-x.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"54"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10245-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Respiration is a fundamental physiological function in humans, often synchronized with movement to enhance performance and efficiency. Recent studies have underscored the modulatory effects of respiratory rhythms on brain oscillations and various behavioral responses, including sensorimotor processes. In light of this connection, our study aimed to investigate the influence of different respiratory patterns on beta corticomuscular coherence (CMC) during isometric hand flexion and extension. Utilizing electroencephalogram (EEG) and surface electromyography (sEMG), we examined three breathing conditions: normal breathing, deep inspiration, and deep expiration. Two experimental protocols were employed: the first experiment required participants to simultaneously breathe and exert force, while the other involved maintaining a constant force while varying breathing patterns. The results revealed that deep inspiration significantly enhanced beta CMC during respiration-synchronized tasks, whereas normal breathing resulted in higher CMC compared to deep respiration during sustained force exertion. In the second experiment, beta CMC was cyclically modulated by respiratory phase across all breathing conditions. The difference in the outcomes from the two protocols demonstrated a task-specific modulation of respiration on motor control. Overall, these findings indicate the complex dynamics of respiration-related effects on corticomuscular neural communication and provide valuable insights into the mechanisms underpinning the coupling between respiration and motor function.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-025-10245-x.

等长手部运动中-皮质-肌肉一致性的呼吸调节。
呼吸是人类的一项基本生理功能,通常与运动同步,以提高表现和效率。最近的研究强调了呼吸节律对大脑振荡和各种行为反应的调节作用,包括感觉运动过程。鉴于这一联系,我们的研究旨在调查不同呼吸模式对等距手屈伸时β皮质肌肉相干性(CMC)的影响。利用脑电图(EEG)和表面肌电图(sEMG),我们检查了三种呼吸状态:正常呼吸、深吸气和深呼气。采用了两种实验方案:第一个实验要求参与者同时呼吸和用力,而另一个实验要求参与者在改变呼吸模式的同时保持恒定的力。结果显示,在呼吸同步任务中,深度吸气显著提高β - CMC,而在持续用力时,与深度呼吸相比,正常呼吸导致更高的CMC。在第二个实验中,β - CMC在所有呼吸条件下通过呼吸相循环调节。两种方案结果的差异表明呼吸对运动控制的任务特异性调节。总的来说,这些发现表明呼吸相关作用对皮质肌神经通讯的复杂动力学,并为呼吸和运动功能之间耦合的机制提供了有价值的见解。补充信息:在线版本包含补充资料,提供地址为10.1007/s11571-025-10245-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信