{"title":"Improving the Efficacy of Cancer mRNA Vaccines.","authors":"Ameya R Kirtane, Giovanni Traverso","doi":"10.1097/PPO.0000000000000764","DOIUrl":null,"url":null,"abstract":"<p><p>mRNA vaccines consist of antigen-encoding mRNA, which produces the antigenic protein upon translation. Coupling antigen production with innate immune activation can generate a potent, antigen-specific T-cell response. Clinical reports have demonstrated the ability of mRNA vaccines to elicit an anticancer immune response against various tumor types. Here, we discuss strategies to enhance the potency of mRNA vaccines. We provide an overview of existing knowledge regarding the activation and trafficking mechanisms of mRNA vaccines and share optimization strategies to boost mRNA-mediated antigen production. In addition, we address methods to target mRNA vaccines to dendritic cells and lymph nodes, key initiators of the immune response. Finally, we review strategies for enhancing immune activation using adjuvants compatible with mRNA vaccines. mRNA vaccines offer unique advantages that can be utilized for oncology applications. However, significant work is needed to understand their underlying mechanisms and develop technologies to improve their effectiveness.</p>","PeriodicalId":9655,"journal":{"name":"Cancer journal","volume":"31 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PPO.0000000000000764","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
mRNA vaccines consist of antigen-encoding mRNA, which produces the antigenic protein upon translation. Coupling antigen production with innate immune activation can generate a potent, antigen-specific T-cell response. Clinical reports have demonstrated the ability of mRNA vaccines to elicit an anticancer immune response against various tumor types. Here, we discuss strategies to enhance the potency of mRNA vaccines. We provide an overview of existing knowledge regarding the activation and trafficking mechanisms of mRNA vaccines and share optimization strategies to boost mRNA-mediated antigen production. In addition, we address methods to target mRNA vaccines to dendritic cells and lymph nodes, key initiators of the immune response. Finally, we review strategies for enhancing immune activation using adjuvants compatible with mRNA vaccines. mRNA vaccines offer unique advantages that can be utilized for oncology applications. However, significant work is needed to understand their underlying mechanisms and develop technologies to improve their effectiveness.
期刊介绍:
The Cancer Journal: The Journal of Principles & Practice of Oncology provides an integrated view of modern oncology across all disciplines. The Journal publishes original research and reviews, and keeps readers current on content published in the book Cancer: Principles & Practice of Oncology.