Skin-lesion segmentation using boundary-aware segmentation network and classification based on a mixture of convolutional and transformer neural networks.
Javaria Amin, Marium Azhar, Habiba Arshad, Amad Zafar, Seong-Han Kim
{"title":"Skin-lesion segmentation using boundary-aware segmentation network and classification based on a mixture of convolutional and transformer neural networks.","authors":"Javaria Amin, Marium Azhar, Habiba Arshad, Amad Zafar, Seong-Han Kim","doi":"10.3389/fmed.2025.1524146","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin cancer is one of the most prevalent cancers worldwide. In the clinical domain, skin lesions such as melanoma detection are still a challenge due to occlusions, poor contrast, poor image quality, and similarities between skin lesions. Deep-/machine-learning methods are used for the early, accurate, and efficient detection of skin lesions. Therefore, we propose a boundary-aware segmentation network (BASNet) model comprising prediction and residual refinement modules.</p><p><strong>Materials and methods: </strong>The prediction module works like a U-Net and is densely supervised by an encoder and decoder. A hybrid loss function is used, which has the potential to help in the clinical domain of dermatology. BASNet handles these challenges by providing robust outcomes, even in suboptimal imaging environments. This leads to accurate early diagnosis, improved treatment outcomes, and efficient clinical workflows. We further propose a compact convolutional transformer model (CCTM) based on convolution and transformers for classification. This was designed on a selected number of layers and hyperparameters having two convolutions, two transformers, 64 projection dimensions, tokenizer, position embedding, sequence pooling, MLP, 64 batch size, two heads, 0.1 stochastic depth, 0.001 learning rate, 0.0001 weight decay, and 100 epochs.</p><p><strong>Results: </strong>The CCTM model was evaluated on six skin-lesion datasets, namely MED-NODE, PH2, ISIC-2019, ISIC-2020, HAM10000, and DermNet datasets, achieving over 98% accuracy.</p><p><strong>Conclusion: </strong>The proposed model holds significant potential in the clinical domain. Its ability to combine local feature extraction and global context understanding makes it ideal for tasks like medical image analysis and disease diagnosis.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1524146"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1524146","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Skin cancer is one of the most prevalent cancers worldwide. In the clinical domain, skin lesions such as melanoma detection are still a challenge due to occlusions, poor contrast, poor image quality, and similarities between skin lesions. Deep-/machine-learning methods are used for the early, accurate, and efficient detection of skin lesions. Therefore, we propose a boundary-aware segmentation network (BASNet) model comprising prediction and residual refinement modules.
Materials and methods: The prediction module works like a U-Net and is densely supervised by an encoder and decoder. A hybrid loss function is used, which has the potential to help in the clinical domain of dermatology. BASNet handles these challenges by providing robust outcomes, even in suboptimal imaging environments. This leads to accurate early diagnosis, improved treatment outcomes, and efficient clinical workflows. We further propose a compact convolutional transformer model (CCTM) based on convolution and transformers for classification. This was designed on a selected number of layers and hyperparameters having two convolutions, two transformers, 64 projection dimensions, tokenizer, position embedding, sequence pooling, MLP, 64 batch size, two heads, 0.1 stochastic depth, 0.001 learning rate, 0.0001 weight decay, and 100 epochs.
Results: The CCTM model was evaluated on six skin-lesion datasets, namely MED-NODE, PH2, ISIC-2019, ISIC-2020, HAM10000, and DermNet datasets, achieving over 98% accuracy.
Conclusion: The proposed model holds significant potential in the clinical domain. Its ability to combine local feature extraction and global context understanding makes it ideal for tasks like medical image analysis and disease diagnosis.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world