Establishment of a deep-learning-assisted recurrent nasopharyngeal carcinoma detecting simultaneous tactic (DARNDEST) with high cost-effectiveness based on magnetic resonance images: a multicenter study in an endemic area.
{"title":"Establishment of a deep-learning-assisted recurrent nasopharyngeal carcinoma detecting simultaneous tactic (DARNDEST) with high cost-effectiveness based on magnetic resonance images: a multicenter study in an endemic area.","authors":"Yishu Deng, Yingying Huang, Haijun Wu, Dongxia He, Wenze Qiu, Bingzhong Jing, Xing Lv, Weixiong Xia, Bin Li, Ying Sun, Chaofeng Li, Chuanmiao Xie, Liangru Ke","doi":"10.1186/s40644-025-00853-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To investigate the feasibility of detecting local recurrent nasopharyngeal carcinoma (rNPC) using unenhanced magnetic resonance images (MRI) and optimize a layered management strategy for follow-up with a deep learning model.</p><p><strong>Methods: </strong>Deep learning models based on 3D DenseNet or ResNet frames using unique sequence (T1WI, T2WI, or T1WIC) or a combination of T1WI and T2WI sequences (T1_T2) were developed to detect local rNPC. A deep-learning-assisted recurrent NPC detecting simultaneous tactic (DARNDEST) utilized DenseNet was optimized by superimposing the T1WIC model over the T1_T2 model in a specific population. Diagnostic efficacy (accuracy, sensitivity, specificity) and examination cost of a single MR scan were compared among the conventional method, T1_T2 model, and DARNDEST using McNemar's Z test.</p><p><strong>Results: </strong>No significant differences in overall accuracy, sensitivity, and specificity were found between the T1WIC model and T1WI, T2WI, or T1_T2 models in both test sets (all P > 0.0167). The DARNDEST had higher accuracy and sensitivity but lower specificity than the T1_T2 model in both the internal (accuracy, 85.91% vs. 84.99%; sensitivity, 90.36% vs. 84.26%; specificity, 82.20% vs. 85.59%) and external (accuracy, 86.14% vs. 84.16%; sensitivity, 90.32% vs. 84.95%; specificity, 82.57% vs. 83.49%) test sets. The cost of a single MR examination using DARNDEST was $330,724 (internal) and $328,971 (external) with a hypothetical cohort of 1,000 patients, relative to $313,250 of the T1_T2 model and $340,865 of the conventional method.</p><p><strong>Conclusions: </strong>Detecting local rNPC using unenhanced MRI with deep learning is feasible and DARNDEST-driven follow-up management is efficient and economic.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"39"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00853-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To investigate the feasibility of detecting local recurrent nasopharyngeal carcinoma (rNPC) using unenhanced magnetic resonance images (MRI) and optimize a layered management strategy for follow-up with a deep learning model.
Methods: Deep learning models based on 3D DenseNet or ResNet frames using unique sequence (T1WI, T2WI, or T1WIC) or a combination of T1WI and T2WI sequences (T1_T2) were developed to detect local rNPC. A deep-learning-assisted recurrent NPC detecting simultaneous tactic (DARNDEST) utilized DenseNet was optimized by superimposing the T1WIC model over the T1_T2 model in a specific population. Diagnostic efficacy (accuracy, sensitivity, specificity) and examination cost of a single MR scan were compared among the conventional method, T1_T2 model, and DARNDEST using McNemar's Z test.
Results: No significant differences in overall accuracy, sensitivity, and specificity were found between the T1WIC model and T1WI, T2WI, or T1_T2 models in both test sets (all P > 0.0167). The DARNDEST had higher accuracy and sensitivity but lower specificity than the T1_T2 model in both the internal (accuracy, 85.91% vs. 84.99%; sensitivity, 90.36% vs. 84.26%; specificity, 82.20% vs. 85.59%) and external (accuracy, 86.14% vs. 84.16%; sensitivity, 90.32% vs. 84.95%; specificity, 82.57% vs. 83.49%) test sets. The cost of a single MR examination using DARNDEST was $330,724 (internal) and $328,971 (external) with a hypothetical cohort of 1,000 patients, relative to $313,250 of the T1_T2 model and $340,865 of the conventional method.
Conclusions: Detecting local rNPC using unenhanced MRI with deep learning is feasible and DARNDEST-driven follow-up management is efficient and economic.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.