CRISPR/Cas9 mediated generation of zebrafish f9a mutant as a model for hemophilia B.

IF 1.2 4区 医学 Q4 HEMATOLOGY
Blood Coagulation & Fibrinolysis Pub Date : 2025-04-01 Epub Date: 2025-03-19 DOI:10.1097/MBC.0000000000001355
Sanchi Dhinoja, Ayah Al Qaryoute, Afnan Deebani, Anthony De Maria, Pudur Jagadeeswaran
{"title":"CRISPR/Cas9 mediated generation of zebrafish f9a mutant as a model for hemophilia B.","authors":"Sanchi Dhinoja, Ayah Al Qaryoute, Afnan Deebani, Anthony De Maria, Pudur Jagadeeswaran","doi":"10.1097/MBC.0000000000001355","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop a zebrafish model for hemophilia B by creating a f9a knockout, as f9a has previously demonstrated functional similarity to human Factor IX.</p><p><strong>Methods: </strong>Using CRISPR/Cas9 technology, two gRNAs targeting exon 8 of the f9a gene, were injected along with Cas9 protein into single-cell zebrafish wild-type embryos. DNA was harvested from the tail tips of the resulting adult zebrafish and screened for mutations using PCR. The founder mutant was crossed with wild-type fish to confirm heritability and subsequently reared to homozygosity. Homozygous mutants were analyzed through quantitative RT-PCR and Western blot to assess f9a RNA and F9a protein levels, respectively. Functional assays like kinetic partial thromboplastin time (kPTT), bleeding assay in adult mutants, and venous laser injury on mutant larvae were performed to assess the hemostatic role.</p><p><strong>Results: </strong>Around 61 adults from the CRISPR/Cas9 knockouts were screened, which resulted in a mutant line with a 72 bp deletion in the exon 8 encoding catalytic domain. Quantitative RT-PCR and Western Blot analysis showed reduced levels of f9a RNA and F9a protein in the homozygous mutants compared to wild-type siblings. At five dpf, f9a homozygous mutant larvae demonstrated prolonged venous occlusion times in a laser injury assay. Additionally, plasma from the mutants displayed delayed fibrin formation in kPTT assays and exhibited increased bleeding after mechanical injury.</p><p><strong>Conclusion: </strong>This study created a zebrafish f9a knockout model that mimics the bleeding phenotype observed in hemophilia B patients, which will be valuable for evaluating novel therapeutic approaches for hemophilia B.</p>","PeriodicalId":8992,"journal":{"name":"Blood Coagulation & Fibrinolysis","volume":" ","pages":"90-98"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Coagulation & Fibrinolysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MBC.0000000000001355","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study aimed to develop a zebrafish model for hemophilia B by creating a f9a knockout, as f9a has previously demonstrated functional similarity to human Factor IX.

Methods: Using CRISPR/Cas9 technology, two gRNAs targeting exon 8 of the f9a gene, were injected along with Cas9 protein into single-cell zebrafish wild-type embryos. DNA was harvested from the tail tips of the resulting adult zebrafish and screened for mutations using PCR. The founder mutant was crossed with wild-type fish to confirm heritability and subsequently reared to homozygosity. Homozygous mutants were analyzed through quantitative RT-PCR and Western blot to assess f9a RNA and F9a protein levels, respectively. Functional assays like kinetic partial thromboplastin time (kPTT), bleeding assay in adult mutants, and venous laser injury on mutant larvae were performed to assess the hemostatic role.

Results: Around 61 adults from the CRISPR/Cas9 knockouts were screened, which resulted in a mutant line with a 72 bp deletion in the exon 8 encoding catalytic domain. Quantitative RT-PCR and Western Blot analysis showed reduced levels of f9a RNA and F9a protein in the homozygous mutants compared to wild-type siblings. At five dpf, f9a homozygous mutant larvae demonstrated prolonged venous occlusion times in a laser injury assay. Additionally, plasma from the mutants displayed delayed fibrin formation in kPTT assays and exhibited increased bleeding after mechanical injury.

Conclusion: This study created a zebrafish f9a knockout model that mimics the bleeding phenotype observed in hemophilia B patients, which will be valuable for evaluating novel therapeutic approaches for hemophilia B.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
111
审稿时长
4-8 weeks
期刊介绍: Blood Coagulation & Fibrinolysis is an international fully refereed journal that features review and original research articles on all clinical, laboratory and experimental aspects of haemostasis and thrombosis. The journal is devoted to publishing significant developments worldwide in the field of blood coagulation, fibrinolysis, thrombosis, platelets and the kininogen-kinin system, as well as dealing with those aspects of blood rheology relevant to haemostasis and the effects of drugs on haemostatic components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信