Prema Velusamy, David J Buckley, Jody L Greaney, Adam J Case, Paul J Fadel, Daniel W Trott
{"title":"IL-6 induces mitochondrial ROS production and blunts NO bioavailability in human aortic endothelial cells.","authors":"Prema Velusamy, David J Buckley, Jody L Greaney, Adam J Case, Paul J Fadel, Daniel W Trott","doi":"10.1152/ajpregu.00289.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammation is a major contributor to the development of endothelial dysfunction. Circulating concentrations of the proinflammatory cytokine interleukin-6 (IL-6) have been shown to predict cardiovascular disease risk and are associated with the development of vascular dysfunction. However, the mechanisms that underlie inflammation-induced endothelial dysfunction are not fully understood. Vascular endothelial dysfunction is characterized by blunted nitric oxide (NO) bioavailability and increased reactive oxygen species (ROS), with mitochondrial ROS suggested to play a primary role. Therefore, we tested the hypothesis that IL-6 induces mitochondrial ROS production and blunts NO bioavailability in endothelial cells. To study the effect of IL-6, we treated the human aortic endothelial cells (HAECs) with IL-6, MitoTEMPOL (MT; a mitochondria-targeted antioxidant), and/or a nitric oxide synthase (NOS) inhibitor (l-NAME) with and without ACh stimulation. Results are expressed as means ± SD (<i>n</i> = 4 replicates), one-way ANOVA, and Bonferroni's post hoc tests were performed. IL-6 treatment resulted in greater mitochondrial ROS (IL-6: 2.94 ± 0.93 a.u.) when compared with the untreated cells (Control: 1 ± 0; <i>P</i> = 0.0021) and also blunted NO bioavailability at baseline (Control: 1 ± 0; IL-6: 0.57 ± 0.08 a.u. <i>P</i> = 0.0008) and with acetylcholine stimulation (Control Ach: 1.27 ± 0.09; IL-6 Ach: 0.60 ± 0.13 a.u. <i>P</i> < 0.0001). Scavenging mitochondrial ROS with MT restored NO bioavailability in the IL-6-treated cells (IL-6: 0.57 ± 0.08; IL-6 MT: 1.16 ± 0.20 a.u. <i>P</i> < 0.0001). These findings indicate that IL-6 has a direct effect on mitochondrial ROS in human aortic endothelial cells, which leads to reduced nitric oxide bioavailability.<b>NEW & NOTEWORTHY</b> In this study, we provide evidence that IL-6 induces mitochondrial ROS production, which impairs nitric oxide bioavailability in human aortic endothelial cells. This finding adds an important perspective to the existing literature on the mechanism by which IL-6 contributes to endothelial dysfunction.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R509-R514"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00289.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic inflammation is a major contributor to the development of endothelial dysfunction. Circulating concentrations of the proinflammatory cytokine interleukin-6 (IL-6) have been shown to predict cardiovascular disease risk and are associated with the development of vascular dysfunction. However, the mechanisms that underlie inflammation-induced endothelial dysfunction are not fully understood. Vascular endothelial dysfunction is characterized by blunted nitric oxide (NO) bioavailability and increased reactive oxygen species (ROS), with mitochondrial ROS suggested to play a primary role. Therefore, we tested the hypothesis that IL-6 induces mitochondrial ROS production and blunts NO bioavailability in endothelial cells. To study the effect of IL-6, we treated the human aortic endothelial cells (HAECs) with IL-6, MitoTEMPOL (MT; a mitochondria-targeted antioxidant), and/or a nitric oxide synthase (NOS) inhibitor (l-NAME) with and without ACh stimulation. Results are expressed as means ± SD (n = 4 replicates), one-way ANOVA, and Bonferroni's post hoc tests were performed. IL-6 treatment resulted in greater mitochondrial ROS (IL-6: 2.94 ± 0.93 a.u.) when compared with the untreated cells (Control: 1 ± 0; P = 0.0021) and also blunted NO bioavailability at baseline (Control: 1 ± 0; IL-6: 0.57 ± 0.08 a.u. P = 0.0008) and with acetylcholine stimulation (Control Ach: 1.27 ± 0.09; IL-6 Ach: 0.60 ± 0.13 a.u. P < 0.0001). Scavenging mitochondrial ROS with MT restored NO bioavailability in the IL-6-treated cells (IL-6: 0.57 ± 0.08; IL-6 MT: 1.16 ± 0.20 a.u. P < 0.0001). These findings indicate that IL-6 has a direct effect on mitochondrial ROS in human aortic endothelial cells, which leads to reduced nitric oxide bioavailability.NEW & NOTEWORTHY In this study, we provide evidence that IL-6 induces mitochondrial ROS production, which impairs nitric oxide bioavailability in human aortic endothelial cells. This finding adds an important perspective to the existing literature on the mechanism by which IL-6 contributes to endothelial dysfunction.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.