Biomechanical and Compositional Changes in the Murine Uterus with Age.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Mari J E Domingo, Triniti N Vanoven, Raffaella De Vita, Maria E Florian Rodriguez, Kristin S Miller, Isaac J Pence
{"title":"Biomechanical and Compositional Changes in the Murine Uterus with Age.","authors":"Mari J E Domingo, Triniti N Vanoven, Raffaella De Vita, Maria E Florian Rodriguez, Kristin S Miller, Isaac J Pence","doi":"10.1007/s10439-025-03709-y","DOIUrl":null,"url":null,"abstract":"<p><p>The uterus is a hollow, fibromuscular organ involved in physiological processes such as menstruation and pregnancy. The content and organization of extracellular matrix constituents such as fibrillar collagen dictate passive (non-contractile) biomechanical tissue function; however, how extracellular matrix composition and biomechanical function change with age in the uterus remains unknown. This study utilizes Raman spectroscopy coupled with biaxial inflation testing to investigate changes in the murine uterus with age (2-3 months, 4-6 months, 10-12 months, and 20-24 months). Linear and toe moduli significantly decreased with reproductive aging (2 to 12 months); however, both moduli increased in the oldest age group (20-24 months). The optical concentration of the combined elastin and collagen spectrum was significantly higher in the oldest group (20-24 month), while the glycogen contribution was the highest in the 2-3 month murine uterus. The presented workflow couples biaxial inflation testing and Raman spectroscopy, representing a critical first step to correlating biomechanics and optical signatures in the aging uterus with the potential for clinical translation. Further, this study may provide critical compositional and structure-function information regarding age-related uterine disorders.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-025-03709-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The uterus is a hollow, fibromuscular organ involved in physiological processes such as menstruation and pregnancy. The content and organization of extracellular matrix constituents such as fibrillar collagen dictate passive (non-contractile) biomechanical tissue function; however, how extracellular matrix composition and biomechanical function change with age in the uterus remains unknown. This study utilizes Raman spectroscopy coupled with biaxial inflation testing to investigate changes in the murine uterus with age (2-3 months, 4-6 months, 10-12 months, and 20-24 months). Linear and toe moduli significantly decreased with reproductive aging (2 to 12 months); however, both moduli increased in the oldest age group (20-24 months). The optical concentration of the combined elastin and collagen spectrum was significantly higher in the oldest group (20-24 month), while the glycogen contribution was the highest in the 2-3 month murine uterus. The presented workflow couples biaxial inflation testing and Raman spectroscopy, representing a critical first step to correlating biomechanics and optical signatures in the aging uterus with the potential for clinical translation. Further, this study may provide critical compositional and structure-function information regarding age-related uterine disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信