{"title":"Recent Advances in the Role of Non-coding RNAs in Fetal Alcohol Spectrum Disorders.","authors":"Ariana N Pritha, Andrea A Pasmay, Shahani Noor","doi":"10.1007/978-3-031-81908-7_7","DOIUrl":null,"url":null,"abstract":"<p><p>Despite numerous preclinical studies modeling fetal alcohol spectrum disorder (FASD)-associated neurodevelopmental deficits to date, a comprehensive molecular landscape dictating these deficits remains poorly understood. Non-coding RNAs constitute a substantial layer of epigenetic regulation of gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Yet, little is known about the differential expression of non-coding RNAs in the context of prenatal alcohol exposure (PAE) that are mechanistically linked with FASD-related neurobehavior deficits. This chapter reviews our current knowledge from preclinical studies in non-coding RNA-mediated molecular mechanisms that may underlie FASD pathophysiology. This chapter also summarizes relevant clinical evidence and current efforts in utilizing these non-coding RNA molecules as biomarkers of PAE-associated deficits impacting central nervous system (CNS) function. Unraveling the diverse roles of various species of non-coding RNAs is critical to enhancing our comprehension of these intricate molecular pathways. Understanding these pathways would likely contribute to identifying critical molecular target(s) for developing efficient treatment strategies and prognostic and diagnostic markers fostering advancements in treating and managing FASD-related CNS dysfunction.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":"1473 ","pages":"129-155"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/978-3-031-81908-7_7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Despite numerous preclinical studies modeling fetal alcohol spectrum disorder (FASD)-associated neurodevelopmental deficits to date, a comprehensive molecular landscape dictating these deficits remains poorly understood. Non-coding RNAs constitute a substantial layer of epigenetic regulation of gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Yet, little is known about the differential expression of non-coding RNAs in the context of prenatal alcohol exposure (PAE) that are mechanistically linked with FASD-related neurobehavior deficits. This chapter reviews our current knowledge from preclinical studies in non-coding RNA-mediated molecular mechanisms that may underlie FASD pathophysiology. This chapter also summarizes relevant clinical evidence and current efforts in utilizing these non-coding RNA molecules as biomarkers of PAE-associated deficits impacting central nervous system (CNS) function. Unraveling the diverse roles of various species of non-coding RNAs is critical to enhancing our comprehension of these intricate molecular pathways. Understanding these pathways would likely contribute to identifying critical molecular target(s) for developing efficient treatment strategies and prognostic and diagnostic markers fostering advancements in treating and managing FASD-related CNS dysfunction.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.