Beom Soo Kim, Bo Min Jeong, Dongeon Kim, Soo Rin Kim, In Jung Kim
{"title":"Biochemical Characterization of a GH11 Xylanase from Xylanase-Producing Trichoderma citrinoviride.","authors":"Beom Soo Kim, Bo Min Jeong, Dongeon Kim, Soo Rin Kim, In Jung Kim","doi":"10.1007/s12010-025-05213-4","DOIUrl":null,"url":null,"abstract":"<p><p>Xylan, a prevalent component of lignocellulose, ranks as the second most abundant carbohydrate in nature. Endo-1,4-xylanase, pivotal for its ability to cleave β-1,4-glycosidic linkages within xylan, is crucial for various applications in the food/feed processing, biofuel production, and paper/pulp industries. Although Trichoderma citrinoviride is renowned for its robust xylan-degrading capacity, the biochemical properties of xylanases derived from T. citrinoviride remain largely uncharacterized. Therefore, this study was conducted to explore the biochemical characteristics of a glycoside hydrolase family 11 xylanase derived from T. citrinoviride (TciGH11). This newly identified enzyme efficiently hydrolyzed beechwood xylan into xylooligosaccharides, exhibiting optimal activity at pH 4.5 and 50 °C, with a specific activity of 1801.5 U mg<sup>-1</sup> against beechwood xylan. Kinetic analysis revealed a Michaelis constant (K<sub>m</sub>), turnover number (k<sub>cat</sub>), and catalytic efficiency (k<sub>cat</sub>/K<sub>m</sub>) of 3.82 mg ml<sup>-1</sup>, 977.8 s<sup>-1</sup>, and 256.0 ml mg<sup>-1</sup> s<sup>-1</sup>, respectively. Structural modeling analysis demonstrated that the non-conserved residues in TciGH11, specifically Glu162 and Ser165, affected the substrate binding properties, potentially resulting in different enzymatic activity compared to that of other xylanases from the Tricoderma genus. Overall, these results could be instrumental in advancing the utilization of lignocellulosic biomass, thereby supporting sustainable bioprocessing of lignocellulosic biomass.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05213-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Xylan, a prevalent component of lignocellulose, ranks as the second most abundant carbohydrate in nature. Endo-1,4-xylanase, pivotal for its ability to cleave β-1,4-glycosidic linkages within xylan, is crucial for various applications in the food/feed processing, biofuel production, and paper/pulp industries. Although Trichoderma citrinoviride is renowned for its robust xylan-degrading capacity, the biochemical properties of xylanases derived from T. citrinoviride remain largely uncharacterized. Therefore, this study was conducted to explore the biochemical characteristics of a glycoside hydrolase family 11 xylanase derived from T. citrinoviride (TciGH11). This newly identified enzyme efficiently hydrolyzed beechwood xylan into xylooligosaccharides, exhibiting optimal activity at pH 4.5 and 50 °C, with a specific activity of 1801.5 U mg-1 against beechwood xylan. Kinetic analysis revealed a Michaelis constant (Km), turnover number (kcat), and catalytic efficiency (kcat/Km) of 3.82 mg ml-1, 977.8 s-1, and 256.0 ml mg-1 s-1, respectively. Structural modeling analysis demonstrated that the non-conserved residues in TciGH11, specifically Glu162 and Ser165, affected the substrate binding properties, potentially resulting in different enzymatic activity compared to that of other xylanases from the Tricoderma genus. Overall, these results could be instrumental in advancing the utilization of lignocellulosic biomass, thereby supporting sustainable bioprocessing of lignocellulosic biomass.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.