{"title":"Biotechnological Applications of Cyanobacteria: Synechocystis and Synechococcus Strains.","authors":"Paul Bolay, Jörg Toepel, Bruno Bühler","doi":"10.1007/10_2025_282","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria as phototrophic microorganisms bear great potential for biotechnological application and a truly sustainable bioeconomy. Besides production of biomass and natural compounds, CO<sub>2</sub>-based production of diverse value-added compounds with engineered strains enjoys ever-growing interest. Representatives of the genera Synechocystis and Synechococcus are the most used cyanobacterial model organisms for this purpose, with studies ranging from basic research to their utilization as cell factories. For both genera, genetic tools become more and more established, being, however, still far less advanced compared to those available for heterotrophic workhorse strains. Production of CO<sub>2</sub>-based compounds, typically established on a proof-of-concept basis, ranges from highly complex products such as pigments, proteins, and hormones to more simple bulk products such as biofuels and commodity chemicals. For some small molecules, e.g., isobutyraldehyde, 2,3-butanediol, L-lactic acid, sucrose, and ethanol, the gram per liter scale has been achieved. The general benefits of cyanobacterial photobiotechnology are the use of light as energy source and the capacity to use CO<sub>2</sub> via photosynthetic carbon fixation. Additionally, the photosynthetic apparatus offers the opportunity to directly utilize electrons derived from photosynthetic water oxidation for redox biotransformations. In this respect, several enzymes have successfully been implemented in cyanobacterial strains, and high specific rates comparable to those achieved with heterotrophs have been reached. Moreover, oxygenic photosynthesis provides an ideal framework to implement oxyfunctionalization reactions also benefitting from the intracellular in situ supply of O<sub>2</sub>. This chapter summarizes the recent advances in cyanobacterial biotechnology with a focus on Synechocystis and Synechococcus strains, encompassing both biotransformation reactions and CO<sub>2</sub>-based product formation. Additionally, we discuss advantages and limitations of cyanobacterial chassis strains and give perspectives for future research and required measures to establish this unique group of bacteria in industrial biotechnology.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2025_282","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria as phototrophic microorganisms bear great potential for biotechnological application and a truly sustainable bioeconomy. Besides production of biomass and natural compounds, CO2-based production of diverse value-added compounds with engineered strains enjoys ever-growing interest. Representatives of the genera Synechocystis and Synechococcus are the most used cyanobacterial model organisms for this purpose, with studies ranging from basic research to their utilization as cell factories. For both genera, genetic tools become more and more established, being, however, still far less advanced compared to those available for heterotrophic workhorse strains. Production of CO2-based compounds, typically established on a proof-of-concept basis, ranges from highly complex products such as pigments, proteins, and hormones to more simple bulk products such as biofuels and commodity chemicals. For some small molecules, e.g., isobutyraldehyde, 2,3-butanediol, L-lactic acid, sucrose, and ethanol, the gram per liter scale has been achieved. The general benefits of cyanobacterial photobiotechnology are the use of light as energy source and the capacity to use CO2 via photosynthetic carbon fixation. Additionally, the photosynthetic apparatus offers the opportunity to directly utilize electrons derived from photosynthetic water oxidation for redox biotransformations. In this respect, several enzymes have successfully been implemented in cyanobacterial strains, and high specific rates comparable to those achieved with heterotrophs have been reached. Moreover, oxygenic photosynthesis provides an ideal framework to implement oxyfunctionalization reactions also benefitting from the intracellular in situ supply of O2. This chapter summarizes the recent advances in cyanobacterial biotechnology with a focus on Synechocystis and Synechococcus strains, encompassing both biotransformation reactions and CO2-based product formation. Additionally, we discuss advantages and limitations of cyanobacterial chassis strains and give perspectives for future research and required measures to establish this unique group of bacteria in industrial biotechnology.
期刊介绍:
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.