{"title":"Recent Progress In Dinuclear Transition Metal Catalysts For Olefin Polymerization.","authors":"Yanhong Xing, Shaofeng Liu, Zhibo Li","doi":"10.1002/marc.202500091","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of dinuclear catalysts marks a significant milestone in the advancement of high-performance polyolefin materials. Featuring two active sites, these dinuclear catalysts dramatically enhance catalytic performances and the resultant properties of polyolefins when compared to their mononuclear alternatives. Such differences arise from pronounced cooperative effects, which include steric hindrance, influences from heteroatoms, agostic interactions, and the spatial arrangement of metal centres within dinuclear catalysts. This review summarizes the progress made in the design of dinuclear metal catalysts specifically for olefin polymerization over the past decade. It further delves into the mechanisms underlying these cooperative effects by drawing comparisons with mononuclear analogues, thereby illuminating how these interactions drive distinctive catalytic behaviors. The insights presented herein are intended to inform the future development of dinuclear metal catalysts, proposing practical strategies for their optimisation and application. Additionally, this review addresses the challenges associated with the development of dinuclear catalysts for olefin polymerization, highlighting areas for further exploration.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500091"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500091","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of dinuclear catalysts marks a significant milestone in the advancement of high-performance polyolefin materials. Featuring two active sites, these dinuclear catalysts dramatically enhance catalytic performances and the resultant properties of polyolefins when compared to their mononuclear alternatives. Such differences arise from pronounced cooperative effects, which include steric hindrance, influences from heteroatoms, agostic interactions, and the spatial arrangement of metal centres within dinuclear catalysts. This review summarizes the progress made in the design of dinuclear metal catalysts specifically for olefin polymerization over the past decade. It further delves into the mechanisms underlying these cooperative effects by drawing comparisons with mononuclear analogues, thereby illuminating how these interactions drive distinctive catalytic behaviors. The insights presented herein are intended to inform the future development of dinuclear metal catalysts, proposing practical strategies for their optimisation and application. Additionally, this review addresses the challenges associated with the development of dinuclear catalysts for olefin polymerization, highlighting areas for further exploration.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.