Jagandeep S Saraya, Nicholas G Horton, Scott R Sammons, Derek K O'Flaherty
{"title":"A Robust Strategy for Introducing Amino-Modifiers in Nucleic Acids: Enabling Novel Amino Tandem Oligonucleotide Synthesis in DNA and RNA.","authors":"Jagandeep S Saraya, Nicholas G Horton, Scott R Sammons, Derek K O'Flaherty","doi":"10.1002/chem.202500448","DOIUrl":null,"url":null,"abstract":"<p><p>Amino-modifiers are pivotal chemical modifications in nucleic acid scaffolds, serving applications ranging from (bio)conjugation to probing the origins of life. We report a simple, efficient, and cost-effective methodology for the introduction of amino-modifiers into DNA and RNA. This approach leverages a commercially available sulfonyl-containing solid support, which is first converted into a mixed N-hydroxysuccinimide carbonate, enabling robust conjugation with primary and secondary amines whether nucleosidic or non-nucleosidic. Oligonucleotides are synthesized via solid-phase synthesis and purified using standard methods, with little to no modification. Building on this framework, we introduce a novel amino-containing tandem oligonucleotide synthesis (aTOS) methodology, which facilitates the introduction of multiple terminal amino (or monophosphate) groups across two oligonucleotide strands. This innovative method broadens the toolkit for the introduction of amino modifications in nucleic acids, for applications in nucleic acid (bio)chemistry and biotechnology.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202500448"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202500448","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amino-modifiers are pivotal chemical modifications in nucleic acid scaffolds, serving applications ranging from (bio)conjugation to probing the origins of life. We report a simple, efficient, and cost-effective methodology for the introduction of amino-modifiers into DNA and RNA. This approach leverages a commercially available sulfonyl-containing solid support, which is first converted into a mixed N-hydroxysuccinimide carbonate, enabling robust conjugation with primary and secondary amines whether nucleosidic or non-nucleosidic. Oligonucleotides are synthesized via solid-phase synthesis and purified using standard methods, with little to no modification. Building on this framework, we introduce a novel amino-containing tandem oligonucleotide synthesis (aTOS) methodology, which facilitates the introduction of multiple terminal amino (or monophosphate) groups across two oligonucleotide strands. This innovative method broadens the toolkit for the introduction of amino modifications in nucleic acids, for applications in nucleic acid (bio)chemistry and biotechnology.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.