Snowflake-like Cu2O-Pt nanocluster-mediated Fenton photothermal and chemodynamic therapy for antibiotic wound healing.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
En Li, Qi Han, Ting Chen, Si Cheng, Jinghua Li
{"title":"Snowflake-like Cu<sub>2</sub>O-Pt nanocluster-mediated Fenton photothermal and chemodynamic therapy for antibiotic wound healing.","authors":"En Li, Qi Han, Ting Chen, Si Cheng, Jinghua Li","doi":"10.1039/d5bm00096c","DOIUrl":null,"url":null,"abstract":"<p><p>The Fenton reaction serves as the fundamental mechanism behind chemodynamic therapy (CDT), wherein highly reactive hydroxyl radicals (˙OH) are produced to efficiently induce bacterial cell death. On the other hand, photothermal therapy (PTT) utilizes photosensitizers to absorb specific wavelengths of light, generating localized heat that disrupts bacterial cell membranes, leading to bactericidal effects. In this study, platinum nanoparticles (PtNPs) were successfully doped onto the surface of hexapodal cuprous oxide (HCu<sub>2</sub>O), resulting in the synthesis of hexapodal snowflake-like Cu<sub>2</sub>O-Pt nanoparticles (HCPNLs). These HCPNLs synergistically combine the mechanisms of CDT and PTT, significantly enhancing antibacterial efficacy. <i>In vitro</i> antimicrobial experiments have demonstrated that HCPNLs exhibit strong antimicrobial activity against both Gram-positive <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and Gram-negative <i>Escherichia coli</i> (<i>E. coli</i>). Additionally, HCPNLs effectively disrupted biofilm formation and improved tissue penetration. In a murine model of mixed bacterial infection, HCPNLs showed excellent synergistic antimicrobial effects, significantly promoting wound healing with minimal toxicity. Overall, the unique properties of HCPNLs provide a novel option for non-resistant antimicrobial therapy in biomedical applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00096c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Fenton reaction serves as the fundamental mechanism behind chemodynamic therapy (CDT), wherein highly reactive hydroxyl radicals (˙OH) are produced to efficiently induce bacterial cell death. On the other hand, photothermal therapy (PTT) utilizes photosensitizers to absorb specific wavelengths of light, generating localized heat that disrupts bacterial cell membranes, leading to bactericidal effects. In this study, platinum nanoparticles (PtNPs) were successfully doped onto the surface of hexapodal cuprous oxide (HCu2O), resulting in the synthesis of hexapodal snowflake-like Cu2O-Pt nanoparticles (HCPNLs). These HCPNLs synergistically combine the mechanisms of CDT and PTT, significantly enhancing antibacterial efficacy. In vitro antimicrobial experiments have demonstrated that HCPNLs exhibit strong antimicrobial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Additionally, HCPNLs effectively disrupted biofilm formation and improved tissue penetration. In a murine model of mixed bacterial infection, HCPNLs showed excellent synergistic antimicrobial effects, significantly promoting wound healing with minimal toxicity. Overall, the unique properties of HCPNLs provide a novel option for non-resistant antimicrobial therapy in biomedical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信