Injectable Functional Microspheres Capable of BMSC Recruitment and Osteogenic Induction for In Situ Bone Regeneration.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wenliao Chang, Peipei Lu, Shuxiang Li, Jinghua Xiang, Jiachen Liu, Yimin Wang, Lei Zhang, Han Sun
{"title":"Injectable Functional Microspheres Capable of BMSC Recruitment and Osteogenic Induction for <i>In Situ</i> Bone Regeneration.","authors":"Wenliao Chang, Peipei Lu, Shuxiang Li, Jinghua Xiang, Jiachen Liu, Yimin Wang, Lei Zhang, Han Sun","doi":"10.1021/acsbiomaterials.4c01720","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, bone defects remain a major challenge in clinical treatment. Recruiting target cells at the defect site and inducing them to differentiate into bone tissue are effective treatment methods. In previous studies, we used the CD271 antibody to construct bone marrow mesenchymal stem cell (BMSC) recruitment microspheres for the treatment of bone defects. However, the osteoconductivity of the microspheres themselves was poor, and the system lacked osteoinductivity, which affected the repair efficiency. In this study, we prepared submillimeter-sized porous chitosan (CS) microspheres through process optimization, and the BMSCs were able to directly adhere and proliferate on their surfaces. After the bioconjugation of the CD271 antibody, bone morphogenetic protein-2 (BMP-2) was further loaded onto the pore structure of microspheres to obtain the injectable microspheres with BMSC recruitment and osteogenic differentiation induction functions. Microspheres could efficiently recruit BMSCs through the combined action of the CD271 antibody and BMP-2 and further induce the recruited BMSCs, differentiating into osteoblasts through BMP-2, which ultimately exhibited promising bone regeneration ability in rats. We expect that the novel functional microspheres have great potential in biomedical applications for <i>in situ</i> treatment of bone defects.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, bone defects remain a major challenge in clinical treatment. Recruiting target cells at the defect site and inducing them to differentiate into bone tissue are effective treatment methods. In previous studies, we used the CD271 antibody to construct bone marrow mesenchymal stem cell (BMSC) recruitment microspheres for the treatment of bone defects. However, the osteoconductivity of the microspheres themselves was poor, and the system lacked osteoinductivity, which affected the repair efficiency. In this study, we prepared submillimeter-sized porous chitosan (CS) microspheres through process optimization, and the BMSCs were able to directly adhere and proliferate on their surfaces. After the bioconjugation of the CD271 antibody, bone morphogenetic protein-2 (BMP-2) was further loaded onto the pore structure of microspheres to obtain the injectable microspheres with BMSC recruitment and osteogenic differentiation induction functions. Microspheres could efficiently recruit BMSCs through the combined action of the CD271 antibody and BMP-2 and further induce the recruited BMSCs, differentiating into osteoblasts through BMP-2, which ultimately exhibited promising bone regeneration ability in rats. We expect that the novel functional microspheres have great potential in biomedical applications for in situ treatment of bone defects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信