Vinayak Hegde, Mahesh P Bhat, Jae-Ho Lee, Cheol Soo Kim, Kyeong-Hwan Lee
{"title":"Bimetallic MOF<u>-</u>Based Hybrid Platform with Dual Stimuli-Responsiveness for Sustained Release and Enhanced Retention.","authors":"Vinayak Hegde, Mahesh P Bhat, Jae-Ho Lee, Cheol Soo Kim, Kyeong-Hwan Lee","doi":"10.1021/acsami.5c00751","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticide delivery carriers provide protection against pathogens but face significant challenges, including limited loading capacity, rapid release rates, and inconsistent performance. To address these issues, this study develops a dual-stimuli-responsive pesticide delivery carrier, featuring an iron-copper bimetal-organic framework (Fe-Cu MOF) supported on diatomaceous earth (DE) and coated with lauric acid (LA). Here, DE serves as a biocompatible scaffold, enhancing the adhesion and retention of MOF particles at target sites, thereby improving the pesticide localization and delivery efficiency. The carrier exhibits a high thiabendazole (Tbz) loading capacity of 38.14% owing to its nanoporous structure. The LA coating functions as a pH- and temperature-responsive barrier, regulating pesticide release to prolong the treatment duration and minimizing the need for repeated applications. The carrier demonstrates controlled release rates of 80.73% at pH 5 and 96.55% at 40 °C, confirming its dual-stimuli responsiveness. In vitro assays reveal 92.26% inhibition of <i>Botrytis cinerea</i> at 1 μg mL<sup>-1</sup>, while in vivo experiments on tomato plants and fruits show complete inhibition at 200 μg mL<sup>-1</sup>. Additionally, the developed composites adhere strongly to leaves through electrostatic and hydrogen-bonding interactions, reducing the loss of pesticide due to rain erosion. Overall, DE-MOF-Tbz-LA presents a promising and efficient alternative to conventional pesticide applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"20209-20224"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00751","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pesticide delivery carriers provide protection against pathogens but face significant challenges, including limited loading capacity, rapid release rates, and inconsistent performance. To address these issues, this study develops a dual-stimuli-responsive pesticide delivery carrier, featuring an iron-copper bimetal-organic framework (Fe-Cu MOF) supported on diatomaceous earth (DE) and coated with lauric acid (LA). Here, DE serves as a biocompatible scaffold, enhancing the adhesion and retention of MOF particles at target sites, thereby improving the pesticide localization and delivery efficiency. The carrier exhibits a high thiabendazole (Tbz) loading capacity of 38.14% owing to its nanoporous structure. The LA coating functions as a pH- and temperature-responsive barrier, regulating pesticide release to prolong the treatment duration and minimizing the need for repeated applications. The carrier demonstrates controlled release rates of 80.73% at pH 5 and 96.55% at 40 °C, confirming its dual-stimuli responsiveness. In vitro assays reveal 92.26% inhibition of Botrytis cinerea at 1 μg mL-1, while in vivo experiments on tomato plants and fruits show complete inhibition at 200 μg mL-1. Additionally, the developed composites adhere strongly to leaves through electrostatic and hydrogen-bonding interactions, reducing the loss of pesticide due to rain erosion. Overall, DE-MOF-Tbz-LA presents a promising and efficient alternative to conventional pesticide applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.