In Silico Formation of Polyphosphazene Networks Based on Phloroglucinol (Phg) and Hexachlorocyclotriphosphazene (HCCP): Structural and Mechanical Properties as a Function of the Phg:HCCP Ratio.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Sylvie Neyertz, Méryll Barraco, Nieck E Benes, David Brown
{"title":"<i>In Silico</i> Formation of Polyphosphazene Networks Based on Phloroglucinol (Phg) and Hexachlorocyclotriphosphazene (HCCP): Structural and Mechanical Properties as a Function of the Phg:HCCP Ratio.","authors":"Sylvie Neyertz, Méryll Barraco, Nieck E Benes, David Brown","doi":"10.1021/acs.jpca.5c00277","DOIUrl":null,"url":null,"abstract":"<p><p>Twenty-four molecular models for polyphosphazene networks were created via an <i>in silico</i> polymerization of phloroglucinol Phg (C<sub>6</sub>H<sub>6</sub>O<sub>3</sub>) and hexachlorocyclotriphosphazene HCCP (N<sub>3</sub>P<sub>3</sub>Cl<sub>6</sub>) mixtures at different Phg:HCCP ratios. A series of monomer mixtures at Phg-to-HCCP stoichiometric ratios ranging from 1:1 to 8:1 were created using molecular dynamics (MD) simulations. Alternating phases of reactions followed by relaxation steps led to the progressive formation of percolating polyphosphazene networks. The actual ratios of Phg to HCCP rings incorporated in the network polymers remained close to those in the mixtures for initial ratios up to 2:1. Above 2:1, there was a gradual divergence toward lower values in the networks as the limits to the number of possible bonds for each monomer started to take effect. The details of the structures were found to be very complex in terms of the probability distributions of links per Phg or HCCP ring. The highest degrees of connectivity and ring packing densities were found in the networks formed from the initial mixtures having Phg-to-HCCP ratios of around 2:1. Mechanical tests were carried out in order to ascertain the resistance of the model polyphosphazene networks to compression/decompression. There again, the networks obtained from the 2:1 initial mixture were found to have the highest Young's modulus and to display the most elasticity as they recovered their initial shape once the compression was removed. The influence of trapped excess monomers in the percolating networks was only noticeable at the highest mixture ratios. The most resistant Phg-HCCP networks are thus obtained from Phg-to-HCCP mixture ratios of around 2:1, with or without trapped excess monomers.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00277","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Twenty-four molecular models for polyphosphazene networks were created via an in silico polymerization of phloroglucinol Phg (C6H6O3) and hexachlorocyclotriphosphazene HCCP (N3P3Cl6) mixtures at different Phg:HCCP ratios. A series of monomer mixtures at Phg-to-HCCP stoichiometric ratios ranging from 1:1 to 8:1 were created using molecular dynamics (MD) simulations. Alternating phases of reactions followed by relaxation steps led to the progressive formation of percolating polyphosphazene networks. The actual ratios of Phg to HCCP rings incorporated in the network polymers remained close to those in the mixtures for initial ratios up to 2:1. Above 2:1, there was a gradual divergence toward lower values in the networks as the limits to the number of possible bonds for each monomer started to take effect. The details of the structures were found to be very complex in terms of the probability distributions of links per Phg or HCCP ring. The highest degrees of connectivity and ring packing densities were found in the networks formed from the initial mixtures having Phg-to-HCCP ratios of around 2:1. Mechanical tests were carried out in order to ascertain the resistance of the model polyphosphazene networks to compression/decompression. There again, the networks obtained from the 2:1 initial mixture were found to have the highest Young's modulus and to display the most elasticity as they recovered their initial shape once the compression was removed. The influence of trapped excess monomers in the percolating networks was only noticeable at the highest mixture ratios. The most resistant Phg-HCCP networks are thus obtained from Phg-to-HCCP mixture ratios of around 2:1, with or without trapped excess monomers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信