Seyed Mohammad Jafar Seyed Golestan, Andrew Smith, Farnaz Fatahian, Atousa Aliahmadi, Greta Bindi, Hassan Baghernia, Vanna Denti, Ahmad Shahir Sadr, Davoud Kazemi, Alireza Ghassempour
{"title":"Enhanced Detection of <i>Escherichia coli</i> Lipids and Proteins Using Graphene-Polyglycerol Amine via Mass Spectrometry.","authors":"Seyed Mohammad Jafar Seyed Golestan, Andrew Smith, Farnaz Fatahian, Atousa Aliahmadi, Greta Bindi, Hassan Baghernia, Vanna Denti, Ahmad Shahir Sadr, Davoud Kazemi, Alireza Ghassempour","doi":"10.1021/acs.jproteome.4c01116","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate and rapid identification of bacterial pathogens poses a significant challenge in clinical diagnostics, environmental monitoring, and microbial research. Lipidomics and proteomics serve as powerful methodologies for bacterial characterization; however, the complexity of biological matrices and the low abundance of bacterial lipids often limit effective detection. This study introduces graphene-polyglycerol amine (G-PGA) as a novel nanomaterial that enhances the selective trapping and detection of <i>Escherichia coli</i> <i>(E. coli)</i> using desorption electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The antimicrobial properties of G-PGA reveal a minimum inhibitory concentration (MIC) of 250 μg/μL and a minimum bactericidal concentration (MBC) of 500 μg/μL. Optimal sonication conditions (10 min) maximize G-PGA's surface activity, facilitating effective bacterial trapping while maintaining cellular integrity, as confirmed by scanning electron microscopy and atomic force microscopy. Molecular docking simulations show a strong affinity between G-PGA and the β-barrel assembly machinery (BAM) proteins of <i>E. coli</i>, suggesting potential disruption of critical bacterial processes. Preconcentration with G-PGA significantly improves detection sensitivity and signal-to-noise ratio in mass spectrometry analyses, highlighting its potential as a transformative tool for rapid, sensitive, and highly specific bacterial identification in lipidomics and proteomics.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c01116","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate and rapid identification of bacterial pathogens poses a significant challenge in clinical diagnostics, environmental monitoring, and microbial research. Lipidomics and proteomics serve as powerful methodologies for bacterial characterization; however, the complexity of biological matrices and the low abundance of bacterial lipids often limit effective detection. This study introduces graphene-polyglycerol amine (G-PGA) as a novel nanomaterial that enhances the selective trapping and detection of Escherichia coli(E. coli) using desorption electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The antimicrobial properties of G-PGA reveal a minimum inhibitory concentration (MIC) of 250 μg/μL and a minimum bactericidal concentration (MBC) of 500 μg/μL. Optimal sonication conditions (10 min) maximize G-PGA's surface activity, facilitating effective bacterial trapping while maintaining cellular integrity, as confirmed by scanning electron microscopy and atomic force microscopy. Molecular docking simulations show a strong affinity between G-PGA and the β-barrel assembly machinery (BAM) proteins of E. coli, suggesting potential disruption of critical bacterial processes. Preconcentration with G-PGA significantly improves detection sensitivity and signal-to-noise ratio in mass spectrometry analyses, highlighting its potential as a transformative tool for rapid, sensitive, and highly specific bacterial identification in lipidomics and proteomics.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".