{"title":"Insights into Protein Unfolding under pH, Temperature, and Shear Using Molecular Dynamics Simulations.","authors":"Yinhao Jia, Clare Cocker, Janani Sampath","doi":"10.1021/acs.biomac.4c00991","DOIUrl":null,"url":null,"abstract":"<p><p>Protein biologics hold immense potential in therapeutic applications, but their ephemeral nature has hindered widespread application. The effects of different stressors on protein folding have long been studied, but whether these stressors induce protein unfolding through different pathways remains unclear. Here, we conduct all-atom molecular dynamics simulations to investigate the unfolding of bovine serum albumin (BSA) under three distinct stressors: high temperature, acidic pH, and shear stress. Our findings reveal that each stressor induces unique unfolding patterns in BSA, indicating stressor-specific unfolding pathways. Structural analyses show that high temperature significantly disrupts the protein's secondary structure, while acidic pH causes alternations in the tertiary structure, leading to domain separation. Shear stress initially perturbs the tertiary structure, initiating structural rearrangements, which causes a loss of secondary structure similar to temperature. These distinct unfolding behaviors suggest that different stabilization strategies are required to enhance protein stability under different denaturation conditions.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00991","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein biologics hold immense potential in therapeutic applications, but their ephemeral nature has hindered widespread application. The effects of different stressors on protein folding have long been studied, but whether these stressors induce protein unfolding through different pathways remains unclear. Here, we conduct all-atom molecular dynamics simulations to investigate the unfolding of bovine serum albumin (BSA) under three distinct stressors: high temperature, acidic pH, and shear stress. Our findings reveal that each stressor induces unique unfolding patterns in BSA, indicating stressor-specific unfolding pathways. Structural analyses show that high temperature significantly disrupts the protein's secondary structure, while acidic pH causes alternations in the tertiary structure, leading to domain separation. Shear stress initially perturbs the tertiary structure, initiating structural rearrangements, which causes a loss of secondary structure similar to temperature. These distinct unfolding behaviors suggest that different stabilization strategies are required to enhance protein stability under different denaturation conditions.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.