Su Jeong Park, Ho-Kyung Lim, Sung-Jae Lee, Seung Hyuk Im, Jong Min Lee, Youngmee Jung, Soo Hyun Kim, Ji-Seok Shim, Jong-Eun Won, Justin J Chung, In-Seok Song
{"title":"Enhancing Biodegradable Bone Plate Performance: Stereocomplex Polylactic Acid for Improved Mechanical Properties and Near-Infrared Transparency.","authors":"Su Jeong Park, Ho-Kyung Lim, Sung-Jae Lee, Seung Hyuk Im, Jong Min Lee, Youngmee Jung, Soo Hyun Kim, Ji-Seok Shim, Jong-Eun Won, Justin J Chung, In-Seok Song","doi":"10.1021/acs.biomac.4c01768","DOIUrl":null,"url":null,"abstract":"<p><p>The use of biodegradable materials in bone plates offers remarkable advantages; however, their application in bone fixation is limited by their brittleness. Moreover, treatments tailored to patient conditions are needed in orthopedics. In this study, bone plates were fabricated with stereocomplex polylactic acid (scPLA) and the effects of poly(d-lactic acid) molecular weight and scPLA blending ratios were analyzed. Although modulus values of poly(l-lactic acid) (PLLA) and scPLA were similar, strain resistance improved at higher scPLA proportions. The enhanced elongation was owing to the presence of tie molecules within the scPLA as opposed to single PLA chains. The fabricated scPLA bone plates exhibited improved mechanical properties and transparency in the optical and near-infrared ranges. scPLA was characterized by a smaller crystallite size. These properties of scPLA combined with its biocompatibility indicate potential for various diagnostic and therapeutic orthopedic applications. Comparisons with commercial PLLA-based bone plates show no significant differences in in vivo bone-healing ability.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01768","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of biodegradable materials in bone plates offers remarkable advantages; however, their application in bone fixation is limited by their brittleness. Moreover, treatments tailored to patient conditions are needed in orthopedics. In this study, bone plates were fabricated with stereocomplex polylactic acid (scPLA) and the effects of poly(d-lactic acid) molecular weight and scPLA blending ratios were analyzed. Although modulus values of poly(l-lactic acid) (PLLA) and scPLA were similar, strain resistance improved at higher scPLA proportions. The enhanced elongation was owing to the presence of tie molecules within the scPLA as opposed to single PLA chains. The fabricated scPLA bone plates exhibited improved mechanical properties and transparency in the optical and near-infrared ranges. scPLA was characterized by a smaller crystallite size. These properties of scPLA combined with its biocompatibility indicate potential for various diagnostic and therapeutic orthopedic applications. Comparisons with commercial PLLA-based bone plates show no significant differences in in vivo bone-healing ability.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.