{"title":"Biobased Physicochemical Reversible Dual-Cross-Linked Hydrogel: Self-Healing, Antibacterial, Antioxidant, and Hemostatic Properties for Diabetic Wound Healing.","authors":"Hanzhang Wang, Bin Lu, Junyi Zhou, Jieying Lai, Xue Zheng, Shuang-Zhuang Guo, Li-Ming Zhang","doi":"10.1021/acs.biomac.5c00087","DOIUrl":null,"url":null,"abstract":"<p><p>Skin wound healing remains challenging due to a lack of ideal wound dressings suitable for acute and chronic wounds. This study introduced a biocompatible hydrogel wound dressing, synthesized through a green chemistry approach, specifically designed to meet the dual needs of acute and chronic wound care. The innovative strategy utilized sustainable biomaterials, soy protein, and vanillin, to construct a physical-reversible chemical dual-cross-linked hydrogel exhibiting high mechanical strength, excellent adhesion, and toughness. Schiff base reversible covalent bonds enabled rapid self-healing within 10 s, significantly improving durability. In a rat liver hemorrhage model, the hydrogel rapidly sealed wounds, achieving effective hemostasis, indicating great potential for acute wound care. Furthermore, vanillin imparted the hydrogel with antimicrobial and antioxidant properties, effectively accelerating diabetic chronic wound healing. This safe and efficient advanced biobased hydrogel offers a novel perspective for wound treatment and holds significant promise for clinical applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00087","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin wound healing remains challenging due to a lack of ideal wound dressings suitable for acute and chronic wounds. This study introduced a biocompatible hydrogel wound dressing, synthesized through a green chemistry approach, specifically designed to meet the dual needs of acute and chronic wound care. The innovative strategy utilized sustainable biomaterials, soy protein, and vanillin, to construct a physical-reversible chemical dual-cross-linked hydrogel exhibiting high mechanical strength, excellent adhesion, and toughness. Schiff base reversible covalent bonds enabled rapid self-healing within 10 s, significantly improving durability. In a rat liver hemorrhage model, the hydrogel rapidly sealed wounds, achieving effective hemostasis, indicating great potential for acute wound care. Furthermore, vanillin imparted the hydrogel with antimicrobial and antioxidant properties, effectively accelerating diabetic chronic wound healing. This safe and efficient advanced biobased hydrogel offers a novel perspective for wound treatment and holds significant promise for clinical applications.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.