{"title":"Meyer-Schuster rearrangement/allylic alkenylation of propynolaldehydes with olefins to synthesize skipped 1,4-dienes.","authors":"Cheng-Ping Shen, Hai-Tao Zhu, Guo-Hua Li, Xin Chang, Jia-Jun Xi, Ni-Ni Zhou, An-Xi Zhou","doi":"10.1039/d5ob00173k","DOIUrl":null,"url":null,"abstract":"<p><p>A highly efficient method for the straightforward synthesis of skipped 1,4-dienes is presented <i>via p</i>-TsOH·H<sub>2</sub>O-catalyzed intramolecular intercepted Meyer-Schuster rearrangement/allylic alkenylation of propynolaldehydes with olefins in a one-pot manner. This cascade transformation is characterized by metal-free and mild conditions, extensive substrate applicability, atom economy, gram-scale production, and water as the sole by-product. Furthermore, the resulting functionalized 1,4-dienes could be derivatized by Fe(III)-promoted radical cyclization, allylic methoxylation under reductive conditions, and Pd(II)-catalyzed Sonogashira coupling.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00173k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
A highly efficient method for the straightforward synthesis of skipped 1,4-dienes is presented via p-TsOH·H2O-catalyzed intramolecular intercepted Meyer-Schuster rearrangement/allylic alkenylation of propynolaldehydes with olefins in a one-pot manner. This cascade transformation is characterized by metal-free and mild conditions, extensive substrate applicability, atom economy, gram-scale production, and water as the sole by-product. Furthermore, the resulting functionalized 1,4-dienes could be derivatized by Fe(III)-promoted radical cyclization, allylic methoxylation under reductive conditions, and Pd(II)-catalyzed Sonogashira coupling.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.