Anisa Ashraf, Yi Huang, Auveen Choroomi, Kyla Johnson, Jocelynn Torres and Eun Ji Chung
{"title":"Endothelial-targeting miR-145 micelles restore barrier function and exhibit atheroprotective effects†","authors":"Anisa Ashraf, Yi Huang, Auveen Choroomi, Kyla Johnson, Jocelynn Torres and Eun Ji Chung","doi":"10.1039/D4NH00613E","DOIUrl":null,"url":null,"abstract":"<p >Atherosclerosis remains the leading cause of death worldwide and is characterized by the accumulation of plaque beneath the endothelium. MicroRNA-145-5p (miR-145), which is downregulated in atherosclerosis, has been shown to mitigate plaque development by promoting the contractile vascular smooth muscle cell (VSMC) phenotype. Previously, our lab found that miR-145 micelles conjugated with MCP-1 peptides were able to inhibit atherosclerosis by targeting diseased VSMC <em>via</em> C–C chemokine receptor 2 (CCR2). Diseased endothelial cells similarly express CCR2; however, the impact of miR-145 micelles on endothelial cell function has not been explored. Thus, in this study, the <em>in vitro</em> therapeutic effects of miR-145 micelles in modulating the endothelium during atherosclerosis are evaluated. To that end, the MCP-1 peptide density on the micelle surface was first optimized for activated endothelial cell binding, followed by loading miR-145 into micelles with the optimal MCP-1 ratio. Following characterization, miR-145 micelle treatment of activated endothelial cells resulted in efficient miR-145 transfection, upregulation of atheroprotective genes, and suppression of atherogenic genes. Furthermore, the treatment enhanced the integrity of endothelial tight junctions and reduced monocyte migration. This work establishes miR-145 micelles as an effective nanotherapeutic for restoring endothelial cell health in cardiovascular disease for the first time.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 5","pages":" 976-986"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d4nh00613e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis remains the leading cause of death worldwide and is characterized by the accumulation of plaque beneath the endothelium. MicroRNA-145-5p (miR-145), which is downregulated in atherosclerosis, has been shown to mitigate plaque development by promoting the contractile vascular smooth muscle cell (VSMC) phenotype. Previously, our lab found that miR-145 micelles conjugated with MCP-1 peptides were able to inhibit atherosclerosis by targeting diseased VSMC via C–C chemokine receptor 2 (CCR2). Diseased endothelial cells similarly express CCR2; however, the impact of miR-145 micelles on endothelial cell function has not been explored. Thus, in this study, the in vitro therapeutic effects of miR-145 micelles in modulating the endothelium during atherosclerosis are evaluated. To that end, the MCP-1 peptide density on the micelle surface was first optimized for activated endothelial cell binding, followed by loading miR-145 into micelles with the optimal MCP-1 ratio. Following characterization, miR-145 micelle treatment of activated endothelial cells resulted in efficient miR-145 transfection, upregulation of atheroprotective genes, and suppression of atherogenic genes. Furthermore, the treatment enhanced the integrity of endothelial tight junctions and reduced monocyte migration. This work establishes miR-145 micelles as an effective nanotherapeutic for restoring endothelial cell health in cardiovascular disease for the first time.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.