Per- and poly-fluoroalkyl substances (PFAS) contamination of surface waters by historic landfills via groundwater plumes: ecosystem exposure and downstream mass loading.

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
J W Roy, V R Propp, T Hua, S J Brown, C Brinovcar, J E Smith, A O De Silva
{"title":"Per- and poly-fluoroalkyl substances (PFAS) contamination of surface waters by historic landfills <i>via</i> groundwater plumes: ecosystem exposure and downstream mass loading.","authors":"J W Roy, V R Propp, T Hua, S J Brown, C Brinovcar, J E Smith, A O De Silva","doi":"10.1039/d4em00612g","DOIUrl":null,"url":null,"abstract":"<p><p>Many historic landfill sites have groundwater plumes that discharge to nearby surface waters. Recent research indicates that leachate of historic landfills can contain elevated concentrations of per- and polyfluoroalkylated substances (PFAS), but there is limited data on resulting PFAS inputs to aquatic ecosystems as might inform on this potential environmental threat. The objective of this study was to evaluate PFAS exposure in three ecological zones and PFAS mass loading downstream, over 1 year, at two historic landfill sites where landfill plumes discharge to nearby surface waters (1 pond with outlet stream, called HB site; 1 urban stream, called DC site). The three zones experienced different magnitudes and patterns of PFAS concentration exposure (<i>i.e.</i>, contaminant presence in the zone). The endobenthic zone of the sediments receiving the landfill plumes experienced the highest concentrations (∑PFAS >4000 ng L<sup>-1</sup> (HB) and >20 000 ng L<sup>-1</sup> (DC)), often year-round and over a substantial area at each site. Dilution of landfill PFAS in surface waters was observed though concentrations were still elevated (∑PFAS: >120 ng L<sup>-1</sup> (HB) and >60 ng L<sup>-1</sup> (DC)), with evidence of year-round pelagic zone exposure. PFAS concentrations in the epibenthic zones could vary between that of the endobenthic and pelagic zones, sometimes with daily, event-based, and longer-term patterns. Together these findings suggest historic landfill plumes can lead to substantial PFAS exposure to a variety of aquatic life. Downstream PFAS mass loadings during base flows were relatively small individually (15 (HB) and 36 (DC) g per year (∑PFAS)); however, collective loadings from the numerous historic landfills in a watershed could contribute to increasing PFAS concentrations of connected water bodies, with implications for ecological health, drinking water sources, and fisheries.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4em00612g","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many historic landfill sites have groundwater plumes that discharge to nearby surface waters. Recent research indicates that leachate of historic landfills can contain elevated concentrations of per- and polyfluoroalkylated substances (PFAS), but there is limited data on resulting PFAS inputs to aquatic ecosystems as might inform on this potential environmental threat. The objective of this study was to evaluate PFAS exposure in three ecological zones and PFAS mass loading downstream, over 1 year, at two historic landfill sites where landfill plumes discharge to nearby surface waters (1 pond with outlet stream, called HB site; 1 urban stream, called DC site). The three zones experienced different magnitudes and patterns of PFAS concentration exposure (i.e., contaminant presence in the zone). The endobenthic zone of the sediments receiving the landfill plumes experienced the highest concentrations (∑PFAS >4000 ng L-1 (HB) and >20 000 ng L-1 (DC)), often year-round and over a substantial area at each site. Dilution of landfill PFAS in surface waters was observed though concentrations were still elevated (∑PFAS: >120 ng L-1 (HB) and >60 ng L-1 (DC)), with evidence of year-round pelagic zone exposure. PFAS concentrations in the epibenthic zones could vary between that of the endobenthic and pelagic zones, sometimes with daily, event-based, and longer-term patterns. Together these findings suggest historic landfill plumes can lead to substantial PFAS exposure to a variety of aquatic life. Downstream PFAS mass loadings during base flows were relatively small individually (15 (HB) and 36 (DC) g per year (∑PFAS)); however, collective loadings from the numerous historic landfills in a watershed could contribute to increasing PFAS concentrations of connected water bodies, with implications for ecological health, drinking water sources, and fisheries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信