{"title":"Active disturbance rejection current controller with time delay compensation predictive ESO for aircraft PMSM drive","authors":"Chunqiang Liu, Zhiwen Zhao, Yanfei You, Xuechao Duan, Lijun Chen, Xi Xiao","doi":"10.1049/elp2.12522","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the authors propose a novel active disturbance rejection current control method aimed at resolving inherent issues within the digital control system of an aircraft's permanent magnet synchronous motor (PMSM). These issues include a one-sample time delay and low-pass filter in the current measurement channel. The proposed method involves estimating the time delay using a predictive extended state observer (ESO) within the current loop of the PMSM to enhance anti-disturbance capabilities and robustness. Initially, a discrete-time model that takes current loop time delay into consideration is established. Subsequently, a predictive ESO is designed to estimate disturbances within the current loop. This ESO incorporates known model information to improve the accuracy and speed of disturbance estimation. Furthermore, compensation is made for the time delay stemming from the low-pass filter in the current measurement channel to enable real-time current detection. Lastly, the disturbance estimated by predictive ESO is combined with the feedback control law to form a model-enhanced active disturbance rejection current controller. The results from simulations and experiments validate the feasibility and accuracy of the proposed methodology.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12522","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the authors propose a novel active disturbance rejection current control method aimed at resolving inherent issues within the digital control system of an aircraft's permanent magnet synchronous motor (PMSM). These issues include a one-sample time delay and low-pass filter in the current measurement channel. The proposed method involves estimating the time delay using a predictive extended state observer (ESO) within the current loop of the PMSM to enhance anti-disturbance capabilities and robustness. Initially, a discrete-time model that takes current loop time delay into consideration is established. Subsequently, a predictive ESO is designed to estimate disturbances within the current loop. This ESO incorporates known model information to improve the accuracy and speed of disturbance estimation. Furthermore, compensation is made for the time delay stemming from the low-pass filter in the current measurement channel to enable real-time current detection. Lastly, the disturbance estimated by predictive ESO is combined with the feedback control law to form a model-enhanced active disturbance rejection current controller. The results from simulations and experiments validate the feasibility and accuracy of the proposed methodology.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf