Specific Ion Effects of Divalent Cations on the Formation and Properties of Polyelectrolyte Multilayers

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Mia Mesić, Tin Klačić, Davor Kovačević
{"title":"Specific Ion Effects of Divalent Cations on the Formation and Properties of Polyelectrolyte Multilayers","authors":"Mia Mesić,&nbsp;Tin Klačić,&nbsp;Davor Kovačević","doi":"10.1002/slct.202501185","DOIUrl":null,"url":null,"abstract":"<p>Multilayer films made of strong polyelectrolytes poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) were built-up on silicon wafer using the layer-by-layer method. The films were built-up in the presence of various divalent cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, and Cu<sup>2+</sup>) to examine how the nature of cations affects the properties of the film. The results have shown that the thickness, morphology, and roughness of films prepared in the presence of transition metal cations are not significantly different. In contrast, these properties varied for multilayers prepared in the presence of alkaline earth metal cations. The difference in the ion-specific behavior of these two classes of cations was explained by the difference in the hydration of these ions and by the bridging of polyelectrolyte chains with ions. While transition metal cations have similar hydration parameters, alkaline earth cations have different degrees of hydration and a better ability to form bridging bonds with polyelectrolyte monomers.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/slct.202501185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202501185","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multilayer films made of strong polyelectrolytes poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) were built-up on silicon wafer using the layer-by-layer method. The films were built-up in the presence of various divalent cations (Mg2+, Ca2+, Sr2+, Ni2+, Zn2+, and Cu2+) to examine how the nature of cations affects the properties of the film. The results have shown that the thickness, morphology, and roughness of films prepared in the presence of transition metal cations are not significantly different. In contrast, these properties varied for multilayers prepared in the presence of alkaline earth metal cations. The difference in the ion-specific behavior of these two classes of cations was explained by the difference in the hydration of these ions and by the bridging of polyelectrolyte chains with ions. While transition metal cations have similar hydration parameters, alkaline earth cations have different degrees of hydration and a better ability to form bridging bonds with polyelectrolyte monomers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信