{"title":"A Combined Compensation Strategy for Steady-State Performance Improvement of Proportional-Proportional-Delay Controller","authors":"Di Wu, Yan Fu, Mingming Li, Luoming OuYang","doi":"10.1049/pel2.70022","DOIUrl":null,"url":null,"abstract":"<p>Within control system architectures, the proportional-proportional-delay (PPD) controller is theoretically characterized by enhanced dynamic responsiveness, a streamlined control structure, and reduced computational demands. Nevertheless, this control strategy demonstrates heightened dependence on system model accuracy coupled with compromised robustness, thus imposing significant constraints on its practical deployment in industrial control scenarios. To improve steady-state control performance of the PPD controller against circuit parameters variations, this paper investigates quantity relationships between circuit parameters variations and grid current amplitude changes first, and a dominant factor and some minor factors affecting the grid current are found out successfully. As a result, linear control of the PPD controller against model parameters changes has been proposed based on a linear function. Meanwhile, an integral controller composed has been integrated into the control strategy to eliminate the residual steady-state error of the proposed linear controller. Finally, a combined control structure with both linear and integral controllers has been proposed, and experimental results have been presented to verify the correctness and effectiveness of the combined control.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Within control system architectures, the proportional-proportional-delay (PPD) controller is theoretically characterized by enhanced dynamic responsiveness, a streamlined control structure, and reduced computational demands. Nevertheless, this control strategy demonstrates heightened dependence on system model accuracy coupled with compromised robustness, thus imposing significant constraints on its practical deployment in industrial control scenarios. To improve steady-state control performance of the PPD controller against circuit parameters variations, this paper investigates quantity relationships between circuit parameters variations and grid current amplitude changes first, and a dominant factor and some minor factors affecting the grid current are found out successfully. As a result, linear control of the PPD controller against model parameters changes has been proposed based on a linear function. Meanwhile, an integral controller composed has been integrated into the control strategy to eliminate the residual steady-state error of the proposed linear controller. Finally, a combined control structure with both linear and integral controllers has been proposed, and experimental results have been presented to verify the correctness and effectiveness of the combined control.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf