Dual-Band MIMO Dipole With Integrated Balun and Optimized Algorithm-Based Decoupling Structure

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Amir Hatamian, Javad Nourinia, Changiz Ghobadi
{"title":"Dual-Band MIMO Dipole With Integrated Balun and Optimized Algorithm-Based Decoupling Structure","authors":"Amir Hatamian,&nbsp;Javad Nourinia,&nbsp;Changiz Ghobadi","doi":"10.1155/mmce/6465774","DOIUrl":null,"url":null,"abstract":"<p>This work presents a multiple-input/multiple-output (MIMO) antenna consisting of dipoles with integrated baluns and a parasitic element to reduce mutual coupling, which can cover two frequency bands. The configuration of the decoupling element is determined by using an optimization algorithm. The algorithm takes nine physical dimensions of the decoupling element as input and adjusts them by minimizing a cost function. One of these decision variables (DVs) is the number of decoupling element’s stairs (steps), which is a discrete parameter. In its simple form, the antenna cannot obtain proper isolation in the low-frequency band, which has been solved by employing a decoupling structure in the middle of the antenna. The experimental results show that the antenna has impedance bandwidths of 1.95–3.50 GHz and 3.98–5.67 GHz, providing minimum isolation of 13.1 and 19.5 dB in the low- and high-frequency bands, respectively. The ECC value is lower than 0.0038, and the peak gains are equal to 4.4 and 5.21 dB for the low- and high-frequency bands. The main contribution of this work is the design of the decoupling element, which, considering the antenna’s characteristics, has improved the antenna’s isolation by 12.4 dB only in the center of the low-frequency band.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/6465774","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/6465774","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a multiple-input/multiple-output (MIMO) antenna consisting of dipoles with integrated baluns and a parasitic element to reduce mutual coupling, which can cover two frequency bands. The configuration of the decoupling element is determined by using an optimization algorithm. The algorithm takes nine physical dimensions of the decoupling element as input and adjusts them by minimizing a cost function. One of these decision variables (DVs) is the number of decoupling element’s stairs (steps), which is a discrete parameter. In its simple form, the antenna cannot obtain proper isolation in the low-frequency band, which has been solved by employing a decoupling structure in the middle of the antenna. The experimental results show that the antenna has impedance bandwidths of 1.95–3.50 GHz and 3.98–5.67 GHz, providing minimum isolation of 13.1 and 19.5 dB in the low- and high-frequency bands, respectively. The ECC value is lower than 0.0038, and the peak gains are equal to 4.4 and 5.21 dB for the low- and high-frequency bands. The main contribution of this work is the design of the decoupling element, which, considering the antenna’s characteristics, has improved the antenna’s isolation by 12.4 dB only in the center of the low-frequency band.

Abstract Image

集成Balun的双频MIMO偶极子与优化算法解耦结构
这项工作提出了一种多输入/多输出(MIMO)天线,该天线由集成平衡的偶极子和寄生元件组成,以减少相互耦合,可以覆盖两个频段。采用优化算法确定解耦单元的构型。该算法将解耦元素的9个物理维度作为输入,并通过最小化代价函数来调整它们。其中一个决策变量(DVs)是解耦元素的阶数,它是一个离散参数。该天线形式简单,不能在低频获得适当的隔离,通过在天线中间采用解耦结构解决了这一问题。实验结果表明,该天线的阻抗带宽为1.95 ~ 3.50 GHz和3.98 ~ 5.67 GHz,在低频段和高频频段分别提供13.1和19.5 dB的最小隔离度。ECC值小于0.0038,低频段和高频频段的峰值增益分别为4.4和5.21 dB。这项工作的主要贡献是设计了去耦元件,考虑到天线的特性,该元件仅在低频带中心将天线的隔离度提高了12.4 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信