{"title":"On a Gallai-type problem and illumination of spiky balls and cap bodies","authors":"Andrii Arman, Andriy Bondarenko, Andriy Prymak, Danylo Radchenko","doi":"10.1112/mtk.70017","DOIUrl":null,"url":null,"abstract":"<p>We show that any finite family of pairwise intersecting balls in <span></span><math></math> can be pierced by <span></span><math></math> points improving the previously known estimate of <span></span><math></math>. As a corollary, this implies that any 2-illuminable spiky ball in <span></span><math></math> can be illuminated by <span></span><math></math> directions. For the illumination number of convex spiky balls, that is, cap bodies, we show an upper bound in terms of the sizes of certain related spherical codes and coverings. For large dimensions, this results in an upper bound of <span></span><math></math>, which can be compared with the previous <span></span><math></math> established only for the centrally symmetric cap bodies. We also prove the lower bounds of <span></span><math></math> for the three problems above.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that any finite family of pairwise intersecting balls in can be pierced by points improving the previously known estimate of . As a corollary, this implies that any 2-illuminable spiky ball in can be illuminated by directions. For the illumination number of convex spiky balls, that is, cap bodies, we show an upper bound in terms of the sizes of certain related spherical codes and coverings. For large dimensions, this results in an upper bound of , which can be compared with the previous established only for the centrally symmetric cap bodies. We also prove the lower bounds of for the three problems above.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.