Kseniya Davydenko, Alexandra Filatova, Mikhail Skoblov
{"title":"Assessing Splicing Variants in the PAX6 Gene: A Comprehensive Minigene Approach","authors":"Kseniya Davydenko, Alexandra Filatova, Mikhail Skoblov","doi":"10.1111/jcmm.70459","DOIUrl":null,"url":null,"abstract":"<p>Haploinsufficiency of the <i>PAX6</i> gene causes aniridia, a congenital eye disorder characterised by the absence or malformation of the iris and foveal hypoplasia. Previous studies indicate that pathogenic splice variants account for up to 15% of all disease-causing <i>PAX6</i> variants. However, this proportion may be significantly underestimated because the pathogenicity of splice variants can only be accurately established through experimental validation. In this study, we developed and validated a system of eight minigene constructions for the functional analysis of splicing variants in the <i>PAX6</i> gene. This system covers all <i>PAX6</i> coding exons and allows the analysis of any exon and most intronic variants of <i>PAX6</i>. Our comprehensive approach, employing fragment analysis and deep targeted sequencing, enabled us to accurately characterise 38 previously described <i>PAX6</i> variants, including challenging cases with multiple splicing events. The application of our system revealed that the number of pathogenic splicing variants might be closer to 30% of all pathogenic <i>PAX6</i> variants. This finding considerably reshapes our understanding of their significance in the genetic landscape of aniridia.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70459","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Haploinsufficiency of the PAX6 gene causes aniridia, a congenital eye disorder characterised by the absence or malformation of the iris and foveal hypoplasia. Previous studies indicate that pathogenic splice variants account for up to 15% of all disease-causing PAX6 variants. However, this proportion may be significantly underestimated because the pathogenicity of splice variants can only be accurately established through experimental validation. In this study, we developed and validated a system of eight minigene constructions for the functional analysis of splicing variants in the PAX6 gene. This system covers all PAX6 coding exons and allows the analysis of any exon and most intronic variants of PAX6. Our comprehensive approach, employing fragment analysis and deep targeted sequencing, enabled us to accurately characterise 38 previously described PAX6 variants, including challenging cases with multiple splicing events. The application of our system revealed that the number of pathogenic splicing variants might be closer to 30% of all pathogenic PAX6 variants. This finding considerably reshapes our understanding of their significance in the genetic landscape of aniridia.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.