Yinan Wang, Chuanhe Yang, Gustavo A. Miranda-Carboni, Hannah Kelso, Jayaraman Seetharaman, Dong-Jin Hwang, Duane D. Miller, Lawrence M. Pfeffer
{"title":"Tyr1497 in the BRG1 Bromodomain of the SWI/SNF Complex is Critical for the Binding and Function of a Selective BRG1 Inhibitor","authors":"Yinan Wang, Chuanhe Yang, Gustavo A. Miranda-Carboni, Hannah Kelso, Jayaraman Seetharaman, Dong-Jin Hwang, Duane D. Miller, Lawrence M. Pfeffer","doi":"10.1111/jcmm.70518","DOIUrl":null,"url":null,"abstract":"<p>BRG1 and BRM are subunits of the SWI/SNF chromatin remodelling complex, which has DNA-stimulated ATPase activity and can destabilise histone–DNA interactions. Targeting SWI/SNF is beneficial for treating various tumours, including glioblastoma (GBM). Our research focussed on BRG1 due to its overexpression in GBM. We developed IV-255, a selective bromodomain (BRD) inhibitor that binds to BRG1 but not BRM. IV-255 sensitised GBM cells to temozolomide (TMZ), the standard GBM treatment. We identified the binding site of IV-255 within the BRG1 BRD and found that the Tyr1497 residue is crucial for IV-255's effect on TMZ-induced GBM cell death, while Asn1540 is not. Structural analyses confirmed that Tyr1497 is involved in the IV-255 binding pocket. Mechanistically, IV-255 increases γH2AX staining in GBM cell nuclei in response to TMZ, indicating an impaired DNA double-strand break response dependent on Tyr1497. IV-255 also sensitised GBM cells to TMZ-induced apoptosis, as shown by PARP and caspase-3 cleavage, which also requires Tyr1497. In conclusion, Tyr1497 within the BRD of BRG1 is critical for its interaction with IV-255 and for sensitising GBM cells to TMZ-induced DNA double-strand breaks and apoptotic cell death.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70518","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
BRG1 and BRM are subunits of the SWI/SNF chromatin remodelling complex, which has DNA-stimulated ATPase activity and can destabilise histone–DNA interactions. Targeting SWI/SNF is beneficial for treating various tumours, including glioblastoma (GBM). Our research focussed on BRG1 due to its overexpression in GBM. We developed IV-255, a selective bromodomain (BRD) inhibitor that binds to BRG1 but not BRM. IV-255 sensitised GBM cells to temozolomide (TMZ), the standard GBM treatment. We identified the binding site of IV-255 within the BRG1 BRD and found that the Tyr1497 residue is crucial for IV-255's effect on TMZ-induced GBM cell death, while Asn1540 is not. Structural analyses confirmed that Tyr1497 is involved in the IV-255 binding pocket. Mechanistically, IV-255 increases γH2AX staining in GBM cell nuclei in response to TMZ, indicating an impaired DNA double-strand break response dependent on Tyr1497. IV-255 also sensitised GBM cells to TMZ-induced apoptosis, as shown by PARP and caspase-3 cleavage, which also requires Tyr1497. In conclusion, Tyr1497 within the BRD of BRG1 is critical for its interaction with IV-255 and for sensitising GBM cells to TMZ-induced DNA double-strand breaks and apoptotic cell death.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.